Nuprl Lemma : sq_stable__ip-triangle

rv:InnerProductSpace. ∀a,b,c:Point.  SqStable(Δ(a;b;c))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace ss-point: Point sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] ip-triangle: Δ(a;b;c) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q prop: guard: {T} uimplies: supposing a
Lemmas referenced :  sq_stable__rless rabs_wf rv-ip_wf rv-sub_wf inner-product-space_subtype rmul_wf rv-norm_wf real_wf rleq_wf int-to-real_wf req_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache lambdaEquality setElimination rename setEquality productEquality natural_numberEquality instantiate independent_isectElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    SqStable(\mDelta{}(a;b;c))



Date html generated: 2017_10_04-PM-11_57_58
Last ObjectModification: 2017_03_15-PM-04_58_29

Theory : inner!product!spaces


Home Index