Nuprl Lemma : up-set-lattice_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[whole:fset(T)]. ∀[le:T ⟶ T ⟶ ℙ].
  up-set-lattice(T;eq;whole;x,y.le[x;y]) ∈ BoundedDistributiveLattice supposing (∀x:T. x ∈ whole) ∧ Trans(T;x,y.le[x;y])


Proof




Definitions occuring in Statement :  up-set-lattice: up-set-lattice(T;eq;whole;x,y.le[x; y]) bdd-distributive-lattice: BoundedDistributiveLattice fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) trans: Trans(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a up-set-lattice: up-set-lattice(T;eq;whole;x,y.le[x; y]) and: P ∧ Q so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] cand: c∧ B all: x:A. B[x] or: P ∨ Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) top: Top false: False so_lambda: λ2y.t[x; y]
Lemmas referenced :  sub-powerset-lattice_wf all_wf fset-member_wf fset_wf or_wf member-fset-union fset-union_wf and_wf member-fset-intersection fset-intersection_wf mem_empty_lemma false_wf trans_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality because_Cache functionEquality hypothesis applyEquality universeEquality independent_isectElimination independent_pairFormation lambdaFormation unionElimination inlFormation inrFormation addLevel impliesFunctionality dependent_functionElimination independent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[whole:fset(T)].  \mforall{}[le:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    up-set-lattice(T;eq;whole;x,y.le[x;y])  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x:T.  x  \mmember{}  whole)  \mwedge{}  Trans(T;x,y.le[x;y])



Date html generated: 2016_05_18-AM-11_28_28
Last ObjectModification: 2015_12_28-PM-02_00_32

Theory : lattices


Home Index