Nuprl Lemma : sub-powerset-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[whole:fset(T)]. ∀[P:fset(T) ⟶ ℙ].
  sub-powerset-lattice(T;eq;whole;P) ∈ BoundedDistributiveLattice 
  supposing (∀x:T. x ∈ whole) ∧ (∀a,b:fset(T).  ((P a) 
⇒ (P b) 
⇒ ((P a ⋃ b) ∧ (P a ⋂ b)))) ∧ (P {}) ∧ (P whole)
Proof
Definitions occuring in Statement : 
sub-powerset-lattice: sub-powerset-lattice(T;eq;whole;P)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
empty-fset: {}
, 
fset-intersection: a ⋂ b
, 
fset-union: x ⋃ y
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sub-powerset-lattice: sub-powerset-lattice(T;eq;whole;P)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
label: ...$L... t
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
uiff: uiff(P;Q)
Lemmas referenced : 
mk-bounded-distributive-lattice_wf, 
fset_wf, 
fset-intersection_wf, 
fset-union_wf, 
empty-fset_wf, 
equal_wf, 
fset-intersection-commutes, 
iff_weakening_equal, 
trivial-equal, 
set_wf, 
fset-union-commutes, 
fset-intersection-associative, 
fset-union-associative, 
fset-absorption1, 
fset-absorption2, 
fset-distributive, 
all_wf, 
fset-member_wf, 
deq_wf, 
fset-extensionality, 
fset-member_witness, 
iff_weakening_uiff, 
member-fset-intersection, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
setEquality, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
functionExtensionality, 
cumulativity, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
equalitySymmetry, 
imageElimination, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
productEquality, 
functionEquality, 
universeEquality, 
independent_pairEquality, 
addLevel
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[whole:fset(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbP{}].
    sub-powerset-lattice(T;eq;whole;P)  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x:T.  x  \mmember{}  whole)
    \mwedge{}  (\mforall{}a,b:fset(T).    ((P  a)  {}\mRightarrow{}  (P  b)  {}\mRightarrow{}  ((P  a  \mcup{}  b)  \mwedge{}  (P  a  \mcap{}  b))))
    \mwedge{}  (P  \{\})
    \mwedge{}  (P  whole)
Date html generated:
2017_10_05-AM-00_36_38
Last ObjectModification:
2017_07_28-AM-09_15_07
Theory : lattices
Home
Index