Nuprl Lemma : sub-powerset-lattice_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[whole:fset(T)]. ∀[P:fset(T) ⟶ ℙ].
  sub-powerset-lattice(T;eq;whole;P) ∈ BoundedDistributiveLattice 
  supposing (∀x:T. x ∈ whole) ∧ (∀a,b:fset(T).  ((P a)  (P b)  ((P a ⋃ b) ∧ (P a ⋂ b)))) ∧ (P {}) ∧ (P whole)


Proof




Definitions occuring in Statement :  sub-powerset-lattice: sub-powerset-lattice(T;eq;whole;P) bdd-distributive-lattice: BoundedDistributiveLattice empty-fset: {} fset-intersection: a ⋂ b fset-union: x ⋃ y fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sub-powerset-lattice: sub-powerset-lattice(T;eq;whole;P) and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] implies:  Q cand: c∧ B so_apply: x[s1;s2] squash: T label: ...$L... t true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] fset-union: x ⋃ y l-union: as ⋃ bs reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: uiff: uiff(P;Q)
Lemmas referenced :  mk-bounded-distributive-lattice_wf fset_wf fset-intersection_wf fset-union_wf empty-fset_wf equal_wf fset-intersection-commutes iff_weakening_equal trivial-equal set_wf fset-union-commutes fset-intersection-associative fset-union-associative fset-absorption1 fset-absorption2 fset-distributive all_wf fset-member_wf deq_wf fset-extensionality fset-member_witness iff_weakening_uiff member-fset-intersection uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination setEquality because_Cache applyEquality hypothesisEquality hypothesis lambdaEquality lambdaFormation functionExtensionality cumulativity setElimination rename dependent_set_memberEquality dependent_functionElimination independent_functionElimination independent_isectElimination equalitySymmetry imageElimination applyLambdaEquality imageMemberEquality baseClosed natural_numberEquality equalityTransitivity isect_memberEquality axiomEquality independent_pairFormation productEquality functionEquality universeEquality independent_pairEquality addLevel

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[whole:fset(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbP{}].
    sub-powerset-lattice(T;eq;whole;P)  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x:T.  x  \mmember{}  whole)
    \mwedge{}  (\mforall{}a,b:fset(T).    ((P  a)  {}\mRightarrow{}  (P  b)  {}\mRightarrow{}  ((P  a  \mcup{}  b)  \mwedge{}  (P  a  \mcap{}  b))))
    \mwedge{}  (P  \{\})
    \mwedge{}  (P  whole)



Date html generated: 2017_10_05-AM-00_36_38
Last ObjectModification: 2017_07_28-AM-09_15_07

Theory : lattices


Home Index