Nuprl Lemma : fset-distributive
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b,c:fset(T)].  (a ⋂ b ⋃ c = a ⋂ b ⋃ a ⋂ c ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-intersection: a ⋂ b
, 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
member-fset-union, 
member-fset-intersection, 
iff_weakening_uiff, 
iff_transitivity, 
uiff_wf, 
or_wf, 
and_wf, 
sq_stable_from_decidable, 
decidable__fset-member, 
deq_wf, 
fset_wf, 
fset-member_wf, 
fset-member_witness, 
fset-union_wf, 
fset-intersection_wf, 
fset-extensionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
inrFormation, 
voidElimination, 
cumulativity, 
addLevel, 
lambdaFormation, 
orFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b,c:fset(T)].    (a  \mcap{}  b  \mcup{}  c  =  a  \mcap{}  b  \mcup{}  a  \mcap{}  c)
Date html generated:
2016_05_14-PM-03_40_28
Last ObjectModification:
2016_01_14-PM-10_41_01
Theory : finite!sets
Home
Index