Nuprl Lemma : fset-distributive

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b,c:fset(T)].  (a ⋂ b ⋃ a ⋂ b ⋃ a ⋂ c ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-intersection: a ⋂ b fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q cand: c∧ B sq_stable: SqStable(P) squash: T guard: {T} not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  member-fset-union member-fset-intersection iff_weakening_uiff iff_transitivity uiff_wf or_wf and_wf sq_stable_from_decidable decidable__fset-member deq_wf fset_wf fset-member_wf fset-member_witness fset-union_wf fset-intersection_wf fset-extensionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule independent_pairEquality isect_memberEquality because_Cache independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality universeEquality independent_pairFormation dependent_functionElimination unionElimination inlFormation imageMemberEquality baseClosed imageElimination inrFormation voidElimination cumulativity addLevel lambdaFormation orFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b,c:fset(T)].    (a  \mcap{}  b  \mcup{}  c  =  a  \mcap{}  b  \mcup{}  a  \mcap{}  c)



Date html generated: 2016_05_14-PM-03_40_28
Last ObjectModification: 2016_01_14-PM-10_41_01

Theory : finite!sets


Home Index