Nuprl Lemma : sum-in-vs-add

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f,g:{n..m 1-} ⟶ Point(vs)].
  {f[i] g[i] n≤i≤m} = Σ{f[i] n≤i≤m} + Σ{g[i] n≤i≤m} ∈ Point(vs))


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T rng: Rng
Definitions unfolded in proof :  sum-in-vs: Σ{f[i] n≤i≤m} uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q prop: uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k rng: Rng all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  from-upto_wf list-subtype-bag le_wf less_than_wf int_seg_wf istype-le istype-less_than vs-point_wf istype-int vector-space_wf rng_wf vs-add_wf vs-bag-add_wf equal_wf vs-bag-add-add subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality natural_numberEquality hypothesis applyEquality setEquality intEquality productEquality independent_isectElimination lambdaEquality_alt setIsType inhabitedIsType productIsType because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies functionIsType universeIsType setElimination rename dependent_functionElimination imageElimination imageMemberEquality baseClosed instantiate universeEquality equalityTransitivity equalitySymmetry productElimination independent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f,g:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    (\mSigma{}\{f[i]  +  g[i]  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  +  \mSigma{}\{g[i]  |  n\mleq{}i\mleq{}m\})



Date html generated: 2019_10_31-AM-06_26_06
Last ObjectModification: 2019_08_08-PM-02_17_25

Theory : linear!algebra


Home Index