Nuprl Lemma : sum-in-vs-add
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[n,m:ℤ]. ∀[f,g:{n..m + 1-} ⟶ Point(vs)].
  (Σ{f[i] + g[i] | n≤i≤m} = Σ{f[i] | n≤i≤m} + Σ{g[i] | n≤i≤m} ∈ Point(vs))
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
from-upto_wf, 
list-subtype-bag, 
le_wf, 
less_than_wf, 
int_seg_wf, 
istype-le, 
istype-less_than, 
vs-point_wf, 
istype-int, 
vector-space_wf, 
rng_wf, 
vs-add_wf, 
vs-bag-add_wf, 
equal_wf, 
vs-bag-add-add, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
setEquality, 
intEquality, 
productEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setIsType, 
inhabitedIsType, 
productIsType, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
functionIsType, 
universeIsType, 
setElimination, 
rename, 
dependent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[f,g:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    (\mSigma{}\{f[i]  +  g[i]  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  +  \mSigma{}\{g[i]  |  n\mleq{}i\mleq{}m\})
Date html generated:
2019_10_31-AM-06_26_06
Last ObjectModification:
2019_08_08-PM-02_17_25
Theory : linear!algebra
Home
Index