Nuprl Lemma : vs-iso-iff-kernel-0

[K:Rng]. ∀[A,B:VectorSpace(K)].
  (A ≅ ⇐⇒ ∃f:A ⟶ B. ((∀a:Point(A). (a ∈ Ker(f) ⇐⇒ 0 ∈ Point(A))) ∧ Surj(Point(A);Point(B);f)))


Proof




Definitions occuring in Statement :  vs-iso: A ≅ B vs-map-kernel: a ∈ Ker(f) vs-map: A ⟶ B vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) surject: Surj(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] vs-map: A ⟶ B so_lambda: λ2x.t[x] rev_implies:  Q rng: Rng prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] cand: c∧ B exists: x:A. B[x] vs-iso: A ≅ B vs-map-kernel: a ∈ Ker(f) guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True squash: T surject: Surj(A;B;f) pi1: fst(t) inject: Inj(A;B;f)
Lemmas referenced :  rng_wf vector-space_wf surject_wf vs-0_wf equal_wf vs-map-kernel_wf iff_wf vs-point_wf all_wf vs-map_wf exists_wf vs-iso_wf iff_weakening_equal true_wf squash_wf vs-map-0 rng_sig_wf vs-map-kernel-zero vs-mul_wf vs-add_wf rng_car_wf
Rules used in proof :  dependent_functionElimination productEquality lambdaEquality sqequalRule because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation independent_pairFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_pairFormation productElimination axiomEquality independent_pairEquality independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination applyEquality levelHypothesis equalityUniverse cumulativity functionEquality functionExtensionality promote_hyp dependent_set_memberEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].
    (A  \mcong{}  B  \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:A  {}\mrightarrow{}  B.  ((\mforall{}a:Point(A).  (a  \mmember{}  Ker(f)  \mLeftarrow{}{}\mRightarrow{}  a  =  0))  \mwedge{}  Surj(Point(A);Point(B);f)))



Date html generated: 2018_05_22-PM-09_43_24
Last ObjectModification: 2018_01_09-PM-02_36_49

Theory : linear!algebra


Home Index