Nuprl Lemma : vs-map-kernel-zero

[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B].
  (∀a:Point(A). (a ∈ Ker(f) ⇐⇒ 0 ∈ Point(A)) ⇐⇒ Inj(Point(A);Point(B);f))


Proof




Definitions occuring in Statement :  vs-map-kernel: a ∈ Ker(f) vs-map: A ⟶ B vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) inject: Inj(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  vs-map-kernel: a ∈ Ker(f) inject: Inj(A;B;f) all: x:A. B[x] rev_implies:  Q so_apply: x[s] vs-map: A ⟶ B so_lambda: λ2x.t[x] rng: Rng prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True squash: T
Lemmas referenced :  rng_wf vector-space_wf vs-map_wf inject_wf vs-0_wf equal_wf vs-map-kernel_wf iff_wf vs-point_wf all_wf vs-subtract_wf equal-iff-vs-subtract-is-0 vs-subtract-self iff_weakening_equal vs-map-subtract true_wf squash_wf vs-map-0 rng_sig_wf
Rules used in proof :  isect_memberEquality applyEquality axiomEquality dependent_functionElimination independent_pairEquality productElimination because_Cache lambdaEquality sqequalRule hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality levelHypothesis equalityUniverse universeEquality equalitySymmetry equalityTransitivity imageElimination addLevel cumulativity functionEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (\mforall{}a:Point(A).  (a  \mmember{}  Ker(f)  \mLeftarrow{}{}\mRightarrow{}  a  =  0)  \mLeftarrow{}{}\mRightarrow{}  Inj(Point(A);Point(B);f))



Date html generated: 2018_05_22-PM-09_43_12
Last ObjectModification: 2018_01_09-PM-02_30_59

Theory : linear!algebra


Home Index