Nuprl Lemma : vs-map-kernel-zero
∀[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B].
  (∀a:Point(A). (a ∈ Ker(f) 
⇐⇒ a = 0 ∈ Point(A)) 
⇐⇒ Inj(Point(A);Point(B);f))
Proof
Definitions occuring in Statement : 
vs-map-kernel: a ∈ Ker(f)
, 
vs-map: A ⟶ B
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
inject: Inj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
vs-map-kernel: a ∈ Ker(f)
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
vs-map: A ⟶ B
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
vs-map_wf, 
inject_wf, 
vs-0_wf, 
equal_wf, 
vs-map-kernel_wf, 
iff_wf, 
vs-point_wf, 
all_wf, 
vs-subtract_wf, 
equal-iff-vs-subtract-is-0, 
vs-subtract-self, 
iff_weakening_equal, 
vs-map-subtract, 
true_wf, 
squash_wf, 
vs-map-0, 
rng_sig_wf
Rules used in proof : 
isect_memberEquality, 
applyEquality, 
axiomEquality, 
dependent_functionElimination, 
independent_pairEquality, 
productElimination, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
addLevel, 
cumulativity, 
functionEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].
    (\mforall{}a:Point(A).  (a  \mmember{}  Ker(f)  \mLeftarrow{}{}\mRightarrow{}  a  =  0)  \mLeftarrow{}{}\mRightarrow{}  Inj(Point(A);Point(B);f))
Date html generated:
2018_05_22-PM-09_43_12
Last ObjectModification:
2018_01_09-PM-02_30_59
Theory : linear!algebra
Home
Index