Nuprl Lemma : pscm-ap-id-term

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}].
  ((t)1(Gamma) t ∈ {Gamma ⊢ _:A})


Proof




Definitions occuring in Statement :  pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} pscm-id: 1(X) ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-term: {X ⊢ _:A} subtype_rel: A ⊆B pscm-id: 1(X) pscm-ap-term: (t)s pscm-ap: (s)x all: x:A. B[x]
Lemmas referenced :  presheaf-term_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf I_set_wf cat-ob_wf cat-arrow_wf presheaf-type-at_wf psc-restriction_wf presheaf-type-ap-morph_wf ps_context_cumulativity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesis universeIsType extract_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality functionExtensionality_alt functionIsType because_Cache equalityIstype

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)1(Gamma)  =  t)



Date html generated: 2020_05_20-PM-01_26_58
Last ObjectModification: 2020_04_01-PM-01_51_07

Theory : presheaf!models!of!type!theory


Home Index