Nuprl Lemma : pscm-ap-id-term
∀[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:A}].
  ((t)1(Gamma) = t ∈ {Gamma ⊢ _:A})
Proof
Definitions occuring in Statement : 
pscm-ap-term: (t)s
, 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type: {X ⊢ _}
, 
pscm-id: 1(X)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-term: {X ⊢ _:A}
, 
subtype_rel: A ⊆r B
, 
pscm-id: 1(X)
, 
pscm-ap-term: (t)s
, 
pscm-ap: (s)x
, 
all: ∀x:A. B[x]
Lemmas referenced : 
presheaf-term_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
I_set_wf, 
cat-ob_wf, 
cat-arrow_wf, 
presheaf-type-at_wf, 
psc-restriction_wf, 
presheaf-type-ap-morph_wf, 
ps_context_cumulativity2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesis, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
functionExtensionality_alt, 
functionIsType, 
because_Cache, 
equalityIstype
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:A\}].
    ((t)1(Gamma)  =  t)
Date html generated:
2020_05_20-PM-01_26_58
Last ObjectModification:
2020_04_01-PM-01_51_07
Theory : presheaf!models!of!type!theory
Home
Index