Nuprl Lemma : intersecting-0-dim-cubes

k:ℕ. ∀b:ℚCube(k). ∀q:ℝ^k. ∀c:ℚCube(k).
  ((in-rat-cube(k;q;c) ∧ in-rat-cube(k;q;b) ∧ (dim(c) 0 ∈ ℤ) ∧ (dim(b) 0 ∈ ℤ))  (c b ∈ ℚCube(k)))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n nat: all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n int: equal: t ∈ T rat-cube-dimension: dim(c) rational-cube: Cube(k)
Definitions unfolded in proof :  pi2: snd(t) so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B prop: iff: ⇐⇒ Q req-vec: req-vec(n;x;y) nat: pi1: fst(t) rational-interval: Interval rational-cube: Cube(k) real-vec: ^n guard: {T} uiff: uiff(P;Q) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  istype-nat rational-cube_wf real-vec_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf istype-int in-rat-cube_wf rat-cube-dimension-zero req-rat2real rationals_wf equal_wf req_wf iff_weakening_uiff req-vec_transitivity int_seg_wf rat2real_wf req-vec_inversion in-0-dim-cube
Rules used in proof :  independent_pairEquality sqequalBase baseClosed addEquality minusEquality intEquality productIsType functionExtensionality because_Cache rename setElimination natural_numberEquality universeIsType independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype inhabitedIsType applyEquality lambdaEquality_alt sqequalRule hypothesis independent_isectElimination hypothesisEquality isectElimination extract_by_obid introduction thin productElimination sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}b:\mBbbQ{}Cube(k).  \mforall{}q:\mBbbR{}\^{}k.  \mforall{}c:\mBbbQ{}Cube(k).
    ((in-rat-cube(k;q;c)  \mwedge{}  in-rat-cube(k;q;b)  \mwedge{}  (dim(c)  =  0)  \mwedge{}  (dim(b)  =  0))  {}\mRightarrow{}  (c  =  b))



Date html generated: 2019_10_30-AM-10_13_00
Last ObjectModification: 2019_10_29-PM-04_27_34

Theory : real!vectors


Home Index