Nuprl Lemma : intersecting-0-dim-cubes
∀k:ℕ. ∀b:ℚCube(k). ∀q:ℝ^k. ∀c:ℚCube(k).
  ((in-rat-cube(k;q;c) ∧ in-rat-cube(k;q;b) ∧ (dim(c) = 0 ∈ ℤ) ∧ (dim(b) = 0 ∈ ℤ)) 
⇒ (c = b ∈ ℚCube(k)))
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rat-cube-dimension: dim(c)
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
pi2: snd(t)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
req-vec: req-vec(n;x;y)
, 
nat: ℕ
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
rational-cube: ℚCube(k)
, 
real-vec: ℝ^n
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
real-vec_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
istype-int, 
in-rat-cube_wf, 
rat-cube-dimension-zero, 
req-rat2real, 
rationals_wf, 
equal_wf, 
req_wf, 
iff_weakening_uiff, 
req-vec_transitivity, 
int_seg_wf, 
rat2real_wf, 
req-vec_inversion, 
in-0-dim-cube
Rules used in proof : 
independent_pairEquality, 
sqequalBase, 
baseClosed, 
addEquality, 
minusEquality, 
intEquality, 
productIsType, 
functionExtensionality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
inhabitedIsType, 
applyEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}b:\mBbbQ{}Cube(k).  \mforall{}q:\mBbbR{}\^{}k.  \mforall{}c:\mBbbQ{}Cube(k).
    ((in-rat-cube(k;q;c)  \mwedge{}  in-rat-cube(k;q;b)  \mwedge{}  (dim(c)  =  0)  \mwedge{}  (dim(b)  =  0))  {}\mRightarrow{}  (c  =  b))
Date html generated:
2019_10_30-AM-10_13_00
Last ObjectModification:
2019_10_29-PM-04_27_34
Theory : real!vectors
Home
Index