Nuprl Lemma : rat-cube-dimension-zero

[k:ℕ]. ∀[c:ℚCube(k)].  uiff(dim(c) 0 ∈ ℤ;∀i:ℕk. ((fst((c i))) (snd((c i))) ∈ ℚ))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) rational-cube: Cube(k) rationals: int_seg: {i..j-} nat: uiff: uiff(P;Q) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B nat: rev_implies:  Q not: ¬A assert: b bnot: ¬bb or: P ∨ Q exists: x:A. B[x] bfalse: ff false: False true: True sq_type: SQType(T) ifthenelse: if then else fi  iff: ⇐⇒ Q guard: {T} prop: btrue: tt it: unit: Unit bool: 𝔹 pi2: snd(t) pi1: fst(t) inhabited-rat-interval: Inhabited(I) rat-interval-dimension: dim(I) rational-interval: Interval implies:  Q rational-cube: Cube(k) all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rat-cube-dimension-0 rat-cube-dimension_wf equal-wf-base assert-inhabited-rat-cube inhabited-rat-cube_wf assert_wf iff_weakening_uiff istype-nat rational-cube_wf rationals_wf assert_witness qless_irreflexivity qless_transitivity_2_qorder qle_weakening_eq_qorder lelt_wf set_subtype_base rat-interval-dimension_wf inhabited-rat-interval_wf int_seg_wf q_le_wf istype-assert assert-q_le-eq qle_antisymmetry qless_complement_qorder qless_wf assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert qle_wf istype-int int_subtype_base subtype_base_sq iff_weakening_equal assert-q_less-eq eqtt_to_assert q_less_wf
Rules used in proof :  productEquality addEquality minusEquality functionEquality isectIsTypeImplies isect_memberEquality_alt independent_pairEquality functionIsType productIsType functionIsTypeImplies axiomEquality lambdaEquality_alt rename setElimination promote_hyp dependent_pairFormation_alt universeIsType sqequalBase baseClosed equalityIstype voidElimination natural_numberEquality intEquality cumulativity instantiate independent_functionElimination independent_isectElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination isectElimination extract_by_obid sqequalRule inhabitedIsType applyEquality because_Cache hypothesisEquality dependent_functionElimination hypothesis thin productElimination sqequalHypSubstitution lambdaFormation_alt independent_pairFormation introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(dim(c)  =  0;\mforall{}i:\mBbbN{}k.  ((fst((c  i)))  =  (snd((c  i)))))



Date html generated: 2019_10_29-AM-07_52_24
Last ObjectModification: 2019_10_27-PM-01_19_58

Theory : rationals


Home Index