Nuprl Lemma : rat-cube-dimension-zero
∀[k:ℕ]. ∀[c:ℚCube(k)].  uiff(dim(c) = 0 ∈ ℤ;∀i:ℕk. ((fst((c i))) = (snd((c i))) ∈ ℚ))
Proof
Definitions occuring in Statement : 
rat-cube-dimension: dim(c)
, 
rational-cube: ℚCube(k)
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
assert: ↑b
, 
bnot: ¬bb
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
false: False
, 
true: True
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
inhabited-rat-interval: Inhabited(I)
, 
rat-interval-dimension: dim(I)
, 
rational-interval: ℚInterval
, 
implies: P 
⇒ Q
, 
rational-cube: ℚCube(k)
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rat-cube-dimension-0, 
rat-cube-dimension_wf, 
equal-wf-base, 
assert-inhabited-rat-cube, 
inhabited-rat-cube_wf, 
assert_wf, 
iff_weakening_uiff, 
istype-nat, 
rational-cube_wf, 
rationals_wf, 
assert_witness, 
qless_irreflexivity, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
lelt_wf, 
set_subtype_base, 
rat-interval-dimension_wf, 
inhabited-rat-interval_wf, 
int_seg_wf, 
q_le_wf, 
istype-assert, 
assert-q_le-eq, 
qle_antisymmetry, 
qless_complement_qorder, 
qless_wf, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
qle_wf, 
istype-int, 
int_subtype_base, 
subtype_base_sq, 
iff_weakening_equal, 
assert-q_less-eq, 
eqtt_to_assert, 
q_less_wf
Rules used in proof : 
productEquality, 
addEquality, 
minusEquality, 
functionEquality, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
functionIsType, 
productIsType, 
functionIsTypeImplies, 
axiomEquality, 
lambdaEquality_alt, 
rename, 
setElimination, 
promote_hyp, 
dependent_pairFormation_alt, 
universeIsType, 
sqequalBase, 
baseClosed, 
equalityIstype, 
voidElimination, 
natural_numberEquality, 
intEquality, 
cumulativity, 
instantiate, 
independent_functionElimination, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
isectElimination, 
extract_by_obid, 
sqequalRule, 
inhabitedIsType, 
applyEquality, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
independent_pairFormation, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(dim(c)  =  0;\mforall{}i:\mBbbN{}k.  ((fst((c  i)))  =  (snd((c  i)))))
Date html generated:
2019_10_29-AM-07_52_24
Last ObjectModification:
2019_10_27-PM-01_19_58
Theory : rationals
Home
Index