Nuprl Lemma : rat-cube-dimension-0

[k:ℕ]. ∀[c:ℚCube(k)].  uiff(dim(c) 0 ∈ ℤ;(↑Inhabited(c)) ∧ (∀i:ℕk. (dim(c i) 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) rat-interval-dimension: dim(I) int_seg: {i..j-} nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  less_than: a < b less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k it: unit: Unit bool: 𝔹 not: ¬A rev_implies:  Q iff: ⇐⇒ Q prop: squash: T rational-cube: Cube(k) so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B nat: false: False true: True bfalse: ff btrue: tt ifthenelse: if then else fi  guard: {T} implies:  Q sq_type: SQType(T) or: P ∨ Q all: x:A. B[x] rat-cube-dimension: dim(c) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties istype-false int_seg_subtype_nat sum-nat-le-simple uiff_transitivity not_wf bnot_wf assert_wf equal-wf-T-base iff_weakening_equal subtype_rel_self sum-is-zero istype-universe true_wf squash_wf equal_wf istype-nat rational-cube_wf rat-interval-dimension_wf istype-assert lelt_wf set_subtype_base rat-cube-dimension_wf istype-int inhabited-rat-cube_wf assert_witness int_seg_wf int_subtype_base assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases
Rules used in proof :  applyLambdaEquality int_eqEquality dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt equalityElimination imageMemberEquality universeEquality imageElimination isectIsTypeImplies isect_memberEquality_alt functionIsType productIsType sqequalBase baseClosed addEquality minusEquality applyEquality equalityIstype inhabitedIsType functionIsTypeImplies axiomEquality lambdaEquality_alt independent_pairEquality hypothesisEquality rename setElimination universeIsType lambdaFormation_alt voidElimination natural_numberEquality intEquality sqequalRule productElimination independent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination hypothesis cumulativity isectElimination instantiate unionElimination thin dependent_functionElimination extract_by_obid because_Cache sqequalHypSubstitution independent_pairFormation cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(dim(c)  =  0;(\muparrow{}Inhabited(c))  \mwedge{}  (\mforall{}i:\mBbbN{}k.  (dim(c  i)  =  0)))



Date html generated: 2019_10_29-AM-07_52_09
Last ObjectModification: 2019_10_27-PM-01_05_35

Theory : rationals


Home Index