Nuprl Lemma : rat-cube-dimension-0
∀[k:ℕ]. ∀[c:ℚCube(k)].  uiff(dim(c) = 0 ∈ ℤ;(↑Inhabited(c)) ∧ (∀i:ℕk. (dim(c i) = 0 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
rat-cube-dimension: dim(c)
, 
inhabited-rat-cube: Inhabited(c)
, 
rational-cube: ℚCube(k)
, 
rat-interval-dimension: dim(I)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
squash: ↓T
, 
rational-cube: ℚCube(k)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
false: False
, 
true: True
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
rat-cube-dimension: dim(c)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
istype-false, 
int_seg_subtype_nat, 
sum-nat-le-simple, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-T-base, 
iff_weakening_equal, 
subtype_rel_self, 
sum-is-zero, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
istype-nat, 
rational-cube_wf, 
rat-interval-dimension_wf, 
istype-assert, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
istype-int, 
inhabited-rat-cube_wf, 
assert_witness, 
int_seg_wf, 
int_subtype_base, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases
Rules used in proof : 
applyLambdaEquality, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
equalityElimination, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
functionIsType, 
productIsType, 
sqequalBase, 
baseClosed, 
addEquality, 
minusEquality, 
applyEquality, 
equalityIstype, 
inhabitedIsType, 
functionIsTypeImplies, 
axiomEquality, 
lambdaEquality_alt, 
independent_pairEquality, 
hypothesisEquality, 
rename, 
setElimination, 
universeIsType, 
lambdaFormation_alt, 
voidElimination, 
natural_numberEquality, 
intEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
isectElimination, 
instantiate, 
unionElimination, 
thin, 
dependent_functionElimination, 
extract_by_obid, 
because_Cache, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(dim(c)  =  0;(\muparrow{}Inhabited(c))  \mwedge{}  (\mforall{}i:\mBbbN{}k.  (dim(c  i)  =  0)))
Date html generated:
2019_10_29-AM-07_52_09
Last ObjectModification:
2019_10_27-PM-01_05_35
Theory : rationals
Home
Index