Nuprl Lemma : cantor-lemma2

z:ℕ ⟶ ℝ
  ∃f:ℕ ⟶ {p:ℝ × ℝ(fst(p)) < (snd(p))}  ⟶ {p:ℝ × ℝ(fst(p)) < (snd(p))} 
   ∀n:ℕ. ∀p:{p:ℝ × ℝ(fst(p)) < (snd(p))} .
     let x,y 
     in let x',y' 
        in (x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ (((z n) < x') ∨ (y' < (z n))) ∧ ((y' x') < (r1/r(n 1)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: nat: pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) prop: nat: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B spreadn: spread3 squash: T true: True sq_stable: SqStable(P)
Lemmas referenced :  cantor-lemma rless_wf real_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf uimplies_subtype rless-int-fractions2 rleq_wf rsub_wf squash_wf true_wf pi1_wf_top istype-nat or_wf sq_stable__rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid rename sqequalHypSubstitution sqequalRule dependent_pairFormation_alt lambdaEquality_alt isectElimination thin productElimination hypothesisEquality hypothesis productIsType universeIsType because_Cache setElimination applyEquality closedConclusion natural_numberEquality addEquality independent_isectElimination inrFormation_alt dependent_functionElimination independent_functionElimination unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation productEquality inhabitedIsType unionIsType hyp_replacement equalitySymmetry imageElimination equalityTransitivity imageMemberEquality baseClosed dependent_set_memberEquality_alt independent_pairEquality equalityIsType1 setIsType functionIsType

Latex:
\mforall{}z:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    \mexists{}f:\mBbbN{}  {}\mrightarrow{}  \{p:\mBbbR{}  \mtimes{}  \mBbbR{}|  (fst(p))  <  (snd(p))\}    {}\mrightarrow{}  \{p:\mBbbR{}  \mtimes{}  \mBbbR{}|  (fst(p))  <  (snd(p))\} 
      \mforall{}n:\mBbbN{}.  \mforall{}p:\{p:\mBbbR{}  \mtimes{}  \mBbbR{}|  (fst(p))  <  (snd(p))\}  .
          let  x,y  =  p 
          in  let  x',y'  =  f  n  p 
                in  (x  \mleq{}  x')
                      \mwedge{}  (x'  <  y')
                      \mwedge{}  (y'  \mleq{}  y)
                      \mwedge{}  (((z  n)  <  x')  \mvee{}  (y'  <  (z  n)))
                      \mwedge{}  ((y'  -  x')  <  (r1/r(n  +  1)))



Date html generated: 2019_10_29-AM-10_25_05
Last ObjectModification: 2018_11_08-PM-06_00_57

Theory : reals


Home Index