Nuprl Lemma : cantor-lemma

x,y,e,z:ℝ.
  (∃x',y':ℝ((x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ ((z < x') ∨ (y' < z)) ∧ ((y' x') < e))) supposing 
     ((x < y) and 
     (r0 < e))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T or: P ∨ Q prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) exists: x:A. B[x] guard: {T} rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] rsub: y
Lemmas referenced :  rless-cases sq_stable__rless rless_wf int-to-real_wf real_wf ravg-between rmin_wf rmin_strict_ub ravg_wf equal_wf radd_wf trivial-rless-radd rleq_weakening_rless radd-preserves-rless rsub_wf rleq_wf or_wf exists_wf rminus_wf rless_functionality radd-rminus-assoc req_weakening radd_functionality radd_comm rmax_wf rmax_strict_lb trivial-rsub-rless radd-zero-both radd-rminus-both req_transitivity radd-ac
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination because_Cache hypothesis sqequalRule imageMemberEquality baseClosed imageElimination unionElimination isectElimination natural_numberEquality productElimination independent_pairFormation rename productEquality equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation addLevel levelHypothesis promote_hyp inrFormation lambdaEquality inlFormation

Latex:
\mforall{}x,y,e,z:\mBbbR{}.
    (\mexists{}x',y':\mBbbR{}.  ((x  \mleq{}  x')  \mwedge{}  (x'  <  y')  \mwedge{}  (y'  \mleq{}  y)  \mwedge{}  ((z  <  x')  \mvee{}  (y'  <  z))  \mwedge{}  ((y'  -  x')  <  e)))  supposing 
          ((x  <  y)  and 
          (r0  <  e))



Date html generated: 2017_10_03-AM-09_11_50
Last ObjectModification: 2017_07_28-AM-07_42_45

Theory : reals


Home Index