Nuprl Lemma : cantor-lemma
∀x,y,e,z:ℝ.
  (∃x',y':ℝ. ((x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ ((z < x') ∨ (y' < z)) ∧ ((y' - x') < e))) supposing 
     ((x < y) and 
     (r0 < e))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rsub: x - y
Lemmas referenced : 
rless-cases, 
sq_stable__rless, 
rless_wf, 
int-to-real_wf, 
real_wf, 
ravg-between, 
rmin_wf, 
rmin_strict_ub, 
ravg_wf, 
equal_wf, 
radd_wf, 
trivial-rless-radd, 
rleq_weakening_rless, 
radd-preserves-rless, 
rsub_wf, 
rleq_wf, 
or_wf, 
exists_wf, 
rminus_wf, 
rless_functionality, 
radd-rminus-assoc, 
req_weakening, 
radd_functionality, 
radd_comm, 
rmax_wf, 
rmax_strict_lb, 
trivial-rsub-rless, 
radd-zero-both, 
radd-rminus-both, 
req_transitivity, 
radd-ac
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
isectElimination, 
natural_numberEquality, 
productElimination, 
independent_pairFormation, 
rename, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation, 
addLevel, 
levelHypothesis, 
promote_hyp, 
inrFormation, 
lambdaEquality, 
inlFormation
Latex:
\mforall{}x,y,e,z:\mBbbR{}.
    (\mexists{}x',y':\mBbbR{}.  ((x  \mleq{}  x')  \mwedge{}  (x'  <  y')  \mwedge{}  (y'  \mleq{}  y)  \mwedge{}  ((z  <  x')  \mvee{}  (y'  <  z))  \mwedge{}  ((y'  -  x')  <  e)))  supposing 
          ((x  <  y)  and 
          (r0  <  e))
Date html generated:
2017_10_03-AM-09_11_50
Last ObjectModification:
2017_07_28-AM-07_42_45
Theory : reals
Home
Index