Nuprl Lemma : const-nonzero-on

[I:Interval]. ∀a:ℝ(a ≠ r0  a≠r0 for x ∈ I)


Proof




Definitions occuring in Statement :  nonzero-on: f[x]≠r0 for x ∈ I interval: Interval rneq: x ≠ y int-to-real: r(n) real: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q nonzero-on: f[x]≠r0 for x ∈ I sq_exists: x:{A| B[x]} member: t ∈ T and: P ∧ Q cand: c∧ B uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rabs_wf rabs-neq-zero rleq_weakening req_weakening i-member_wf i-approx_wf real_wf and_wf rless_wf int-to-real_wf all_wf rleq_wf set_wf nat_plus_wf icompact_wf rneq_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_set_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination independent_pairFormation because_Cache independent_isectElimination setElimination rename natural_numberEquality sqequalRule lambdaEquality functionEquality

Latex:
\mforall{}[I:Interval].  \mforall{}a:\mBbbR{}.  (a  \mneq{}  r0  {}\mRightarrow{}  a\mneq{}r0  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_19_04
Last ObjectModification: 2015_12_27-PM-11_24_15

Theory : reals


Home Index