Nuprl Lemma : eventually-equal-implies-bdd-diff

f,g:ℕ+ ⟶ ℤ.  ((∃m:ℕ+. ∀n:{m...}. ((f n) (g n) ∈ ℤ))  bdd-diff(f;g))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) int_upper: {i...} nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + int_upper: {i...} nat: le: A ≤ B guard: {T} uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] less_than': less_than'(a;b) false: False not: ¬A sq_type: SQType(T) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top absval: |i|
Lemmas referenced :  bdd-diff-iff-eventual exists_wf nat_wf all_wf int_upper_wf le_wf absval_wf subtract_wf less_than_transitivity1 less_than_wf nat_plus_wf equal_wf false_wf subtype_base_sq int_subtype_base int_upper_properties nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination dependent_pairFormation isectElimination hypothesis sqequalRule lambdaEquality setElimination rename because_Cache applyEquality functionExtensionality dependent_set_memberEquality natural_numberEquality independent_isectElimination intEquality functionEquality independent_pairFormation instantiate cumulativity equalityTransitivity equalitySymmetry unionElimination approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    ((\mexists{}m:\mBbbN{}\msupplus{}.  \mforall{}n:\{m...\}.  ((f  n)  =  (g  n)))  {}\mRightarrow{}  bdd-diff(f;g))



Date html generated: 2017_10_02-PM-07_13_07
Last ObjectModification: 2017_07_05-PM-04_24_39

Theory : reals


Home Index