Nuprl Lemma : eventually-equal-implies-bdd-diff
∀f,g:ℕ+ ⟶ ℤ.  ((∃m:ℕ+. ∀n:{m...}. ((f n) = (g n) ∈ ℤ)) 
⇒ bdd-diff(f;g))
Proof
Definitions occuring in Statement : 
bdd-diff: bdd-diff(f;g)
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
nat: ℕ
, 
le: A ≤ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
sq_type: SQType(T)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
absval: |i|
Lemmas referenced : 
bdd-diff-iff-eventual, 
exists_wf, 
nat_wf, 
all_wf, 
int_upper_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
less_than_transitivity1, 
less_than_wf, 
nat_plus_wf, 
equal_wf, 
false_wf, 
subtype_base_sq, 
int_subtype_base, 
int_upper_properties, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
intEquality, 
functionEquality, 
independent_pairFormation, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    ((\mexists{}m:\mBbbN{}\msupplus{}.  \mforall{}n:\{m...\}.  ((f  n)  =  (g  n)))  {}\mRightarrow{}  bdd-diff(f;g))
Date html generated:
2017_10_02-PM-07_13_07
Last ObjectModification:
2017_07_05-PM-04_24_39
Theory : reals
Home
Index