Nuprl Lemma : bdd-diff-iff-eventual
∀f,g:ℕ+ ⟶ ℤ.  (∃m:ℕ+. ∃B:ℕ. ∀n:{m...}. (|(f n) - g n| ≤ B) 
⇐⇒ bdd-diff(f;g))
Proof
Definitions occuring in Statement : 
bdd-diff: bdd-diff(f;g)
, 
absval: |i|
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
nat: ℕ
, 
le: A ≤ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bdd-diff: bdd-diff(f;g)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
exists_wf, 
nat_plus_wf, 
nat_wf, 
all_wf, 
int_upper_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
less_than_transitivity1, 
less_than_wf, 
bdd-diff_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
subtype_rel_sets, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
itermConstant_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
imax_wf, 
imax-list_wf, 
map-length, 
length-from-upto, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__lt, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
imax_ub, 
imax-list-ub, 
map_wf, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
from-upto_wf, 
l_exists_iff, 
l_member_wf, 
member-map, 
member-from-upto
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
dependent_set_memberEquality, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
functionEquality, 
intEquality, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
dependent_pairFormation, 
setEquality, 
applyLambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
inlFormation, 
inrFormation, 
productEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (\mexists{}m:\mBbbN{}\msupplus{}.  \mexists{}B:\mBbbN{}.  \mforall{}n:\{m...\}.  (|(f  n)  -  g  n|  \mleq{}  B)  \mLeftarrow{}{}\mRightarrow{}  bdd-diff(f;g))
Date html generated:
2017_10_02-PM-07_13_04
Last ObjectModification:
2017_07_28-AM-07_20_00
Theory : reals
Home
Index