Nuprl Lemma : bdd-diff-iff-eventual

f,g:ℕ+ ⟶ ℤ.  (∃m:ℕ+. ∃B:ℕ. ∀n:{m...}. (|(f n) n| ≤ B) ⇐⇒ bdd-diff(f;g))


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) absval: |i| int_upper: {i...} nat_plus: + nat: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] subtract: m int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + int_upper: {i...} nat: le: A ≤ B guard: {T} uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] rev_implies:  Q exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) bdd-diff: bdd-diff(f;g) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b cand: c∧ B less_than': less_than'(a;b) true: True less_than: a < b squash: T
Lemmas referenced :  exists_wf nat_plus_wf nat_wf all_wf int_upper_wf le_wf absval_wf subtract_wf less_than_transitivity1 less_than_wf bdd-diff_wf decidable__equal_int subtype_base_sq int_subtype_base subtype_rel_sets nat_plus_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf imax_wf imax-list_wf map-length length-from-upto lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__lt itermSubtract_wf int_term_value_subtract_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot imax_ub imax-list-ub map_wf false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel from-upto_wf l_exists_iff l_member_wf member-map member-from-upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality setElimination rename because_Cache applyEquality functionExtensionality hypothesisEquality dependent_set_memberEquality productElimination natural_numberEquality independent_isectElimination functionEquality intEquality dependent_functionElimination unionElimination instantiate cumulativity independent_functionElimination dependent_pairFormation setEquality applyLambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityElimination equalityTransitivity equalitySymmetry promote_hyp inlFormation inrFormation productEquality imageMemberEquality baseClosed

Latex:
\mforall{}f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (\mexists{}m:\mBbbN{}\msupplus{}.  \mexists{}B:\mBbbN{}.  \mforall{}n:\{m...\}.  (|(f  n)  -  g  n|  \mleq{}  B)  \mLeftarrow{}{}\mRightarrow{}  bdd-diff(f;g))



Date html generated: 2017_10_02-PM-07_13_04
Last ObjectModification: 2017_07_28-AM-07_20_00

Theory : reals


Home Index