Nuprl Lemma : fun-converges-on-compact

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.
  ((∀m:{m:ℕ+icompact(i-approx(I;m))} . λn.f[n;x]↓ for x ∈ i-approx(I;m)))  λn.f[n;x]↓ for x ∈ I))


Proof




Definitions occuring in Statement :  fun-converges: λn.f[n; x]↓ for x ∈ I) icompact: icompact(I) rfun: I ⟶ℝ i-approx: i-approx(I;n) interval: Interval nat_plus: + nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q fun-cauchy: λn.f[n; x] is cauchy for x ∈ I so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subinterval: I ⊆  label: ...$L... t nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True top: Top
Lemmas referenced :  i-approx-approx less_than_wf i-member-approx fun-converges_wf all_wf icompact_wf nat_plus_wf subtype_rel_sets i-approx_wf i-approx-is-subinterval nat_wf i-member_wf real_wf rfun_wf fun-converges-iff-cauchy
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis isectElimination setEquality productElimination independent_functionElimination setElimination rename because_Cache independent_isectElimination dependent_set_memberEquality functionEquality natural_numberEquality independent_pairFormation introduction imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(I;m))\}  .  \mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  i-approx(I;m)))  {}\mRightarrow{}  \mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)\000C)



Date html generated: 2016_05_18-AM-09_54_15
Last ObjectModification: 2016_01_17-AM-02_53_59

Theory : reals


Home Index