Nuprl Lemma : fun-converges-on-compact
∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.
  ((∀m:{m:ℕ+| icompact(i-approx(I;m))} . λn.f[n;x]↓ for x ∈ i-approx(I;m))) 
⇒ λn.f[n;x]↓ for x ∈ I))
Proof
Definitions occuring in Statement : 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
i-approx: i-approx(I;n)
, 
interval: Interval
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subinterval: I ⊆ J 
, 
label: ...$L... t
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
top: Top
Lemmas referenced : 
i-approx-approx, 
less_than_wf, 
i-member-approx, 
fun-converges_wf, 
all_wf, 
icompact_wf, 
nat_plus_wf, 
subtype_rel_sets, 
i-approx_wf, 
i-approx-is-subinterval, 
nat_wf, 
i-member_wf, 
real_wf, 
rfun_wf, 
fun-converges-iff-cauchy
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
isectElimination, 
setEquality, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality, 
functionEquality, 
natural_numberEquality, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx(I;m))\}  .  \mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  i-approx(I;m)))  {}\mRightarrow{}  \mlambda{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)\000C)
Date html generated:
2016_05_18-AM-09_54_15
Last ObjectModification:
2016_01_17-AM-02_53_59
Theory : reals
Home
Index