Nuprl Lemma : imonomial-term-add-req
∀vs:ℤ List. ∀a,b:ℤ-o. ∀f:ℤ ⟶ ℝ.  ((real_term_value(f;imonomial-term(<a, vs>)) + real_term_value(f;imonomial-term(<b, vs\000C>))) = real_term_value(f;imonomial-term(<a + b, vs>)))
Proof
Definitions occuring in Statement : 
real_term_value: real_term_value(f;t)
, 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
imonomial-term: imonomial-term(m)
, 
list: T List
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
int_nzero_wf, 
list_wf, 
radd_wf, 
real_term_value_wf, 
imonomial-term_wf, 
rmul_wf, 
int-to-real_wf, 
req_weakening, 
req_functionality, 
radd_functionality, 
imonomial-term-linear-req, 
req_transitivity, 
req_inversion, 
rmul-distrib, 
rmul_functionality, 
radd-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
functionEquality, 
intEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}vs:\mBbbZ{}  List.  \mforall{}a,b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.
    ((real\_term\_value(f;imonomial-term(<a,  vs>))  +  real\_term\_value(f;imonomial-term(<b,  vs>)))  =  real\_\000Cterm\_value(f;imonomial-term(<a  +  b,  vs>)))
Date html generated:
2017_10_02-PM-07_19_08
Last ObjectModification:
2017_04_03-AM-00_43_06
Theory : reals
Home
Index