Nuprl Lemma : imonomial-term-add-req

vs:ℤ List. ∀a,b:ℤ-o. ∀f:ℤ ⟶ ℝ.  ((real_term_value(f;imonomial-term(<a, vs>)) real_term_value(f;imonomial-term(<b, vs\000C>))) real_term_value(f;imonomial-term(<b, vs>)))


Proof




Definitions occuring in Statement :  real_term_value: real_term_value(f;t) req: y radd: b real: imonomial-term: imonomial-term(m) list: List int_nzero: -o all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> add: m int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_nzero: -o uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf int_nzero_wf list_wf radd_wf real_term_value_wf imonomial-term_wf rmul_wf int-to-real_wf req_weakening req_functionality radd_functionality imonomial-term-linear-req req_transitivity req_inversion rmul-distrib rmul_functionality radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality intEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin functionExtensionality applyEquality hypothesisEquality independent_pairEquality setElimination rename because_Cache natural_numberEquality addEquality independent_isectElimination dependent_functionElimination productElimination

Latex:
\mforall{}vs:\mBbbZ{}  List.  \mforall{}a,b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.
    ((real\_term\_value(f;imonomial-term(<a,  vs>))  +  real\_term\_value(f;imonomial-term(<b,  vs>)))  =  real\_\000Cterm\_value(f;imonomial-term(<a  +  b,  vs>)))



Date html generated: 2017_10_02-PM-07_19_08
Last ObjectModification: 2017_04_03-AM-00_43_06

Theory : reals


Home Index