Nuprl Lemma : int-radd-req

[k:ℤ]. ∀[x:ℝ].  (k (r(k) x))


Proof




Definitions occuring in Statement :  int-radd: x req: y radd: b int-to-real: r(n) real: uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q subtype_rel: A ⊆B real: all: x:A. B[x] int-to-real: r(n) int-radd: x nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  req-iff-bdd-diff int-radd_wf radd_wf int-to-real_wf req_witness real_wf istype-int nat_plus_wf bdd-diff_weakening nat_plus_properties decidable__equal_int decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than intformeq_wf itermAdd_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_mul_lemma bdd-diff_functionality radd-bdd-diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_functionElimination universeIsType sqequalRule isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType applyEquality lambdaEquality_alt setElimination rename addEquality dependent_functionElimination functionExtensionality unionElimination dependent_set_memberEquality_alt natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x:\mBbbR{}].    (k  +  x  =  (r(k)  +  x))



Date html generated: 2019_10_29-AM-09_31_47
Last ObjectModification: 2019_02_13-PM-00_55_13

Theory : reals


Home Index