Nuprl Lemma : int-radd-req
∀[k:ℤ]. ∀[x:ℝ].  (k + x = (r(k) + x))
Proof
Definitions occuring in Statement : 
int-radd: k + x
, 
req: x = y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
int-to-real: r(n)
, 
int-radd: k + x
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
req-iff-bdd-diff, 
int-radd_wf, 
radd_wf, 
int-to-real_wf, 
req_witness, 
real_wf, 
istype-int, 
nat_plus_wf, 
bdd-diff_weakening, 
nat_plus_properties, 
decidable__equal_int, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
intformeq_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
bdd-diff_functionality, 
radd-bdd-diff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
universeIsType, 
sqequalRule, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
addEquality, 
dependent_functionElimination, 
functionExtensionality, 
unionElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x:\mBbbR{}].    (k  +  x  =  (r(k)  +  x))
Date html generated:
2019_10_29-AM-09_31_47
Last ObjectModification:
2019_02_13-PM-00_55_13
Theory : reals
Home
Index