Nuprl Lemma : interval-vec-subtype
∀[I:Interval]. ∀[n,m:ℕ].  I^m ⊆r I^n supposing n ≤ m
Proof
Definitions occuring in Statement : 
interval-vec: I^n
, 
interval: Interval
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
Definitions unfolded in proof : 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
interval-vec: I^n
Lemmas referenced : 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
interval_wf, 
nat_wf, 
le_wf, 
real-vec-subtype, 
subtype_rel_set, 
i-member_wf, 
int_seg_wf, 
all_wf, 
real-vec_wf, 
subtype_rel_sets
Rules used in proof : 
voidEquality, 
voidElimination, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
productElimination, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
axiomEquality, 
lambdaFormation, 
independent_isectElimination, 
because_Cache, 
applyEquality, 
rename, 
setElimination, 
natural_numberEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval].  \mforall{}[n,m:\mBbbN{}].    I\^{}m  \msubseteq{}r  I\^{}n  supposing  n  \mleq{}  m
Date html generated:
2018_07_29-AM-09_45_05
Last ObjectModification:
2018_07_02-PM-01_17_36
Theory : reals
Home
Index