Nuprl Lemma : nonzero-on-implies

I:Interval. ∀f:I ⟶ℝ.  (f[x]≠r0 for x ∈  (∀x:ℝ((x ∈ I)  f[x] ≠ r0)))


Proof




Definitions occuring in Statement :  nonzero-on: f[x]≠r0 for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rneq: x ≠ y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] nonzero-on: f[x]≠r0 for x ∈ I icompact: icompact(I) and: P ∧ Q cand: c∧ B i-nonvoid: i-nonvoid(I) sq_exists: x:{A| B[x]} sq_stable: SqStable(P) guard: {T} uimplies: supposing a squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rabs-positive-iff rless_transitivity1 rabs_wf int-to-real_wf sq_stable__rless i-approx-finite i-approx-closed i-approx_wf icompact_wf interval_wf rfun_wf nonzero-on_wf real_wf i-member_wf i-member-witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination isectElimination sqequalRule lambdaEquality applyEquality setEquality dependent_set_memberEquality independent_pairFormation because_Cache dependent_pairFormation setElimination rename natural_numberEquality introduction independent_isectElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  f[x]  \mneq{}  r0)))



Date html generated: 2016_05_18-AM-09_19_14
Last ObjectModification: 2016_01_17-AM-02_40_45

Theory : reals


Home Index