Nuprl Lemma : nonzero-on_wf
∀[I:Interval]. ∀[f:I ⟶ℝ]. (f[x]≠r0 for x ∈ I ∈ ℙ)
Proof
Definitions occuring in Statement :
nonzero-on: f[x]≠r0 for x ∈ I
,
rfun: I ⟶ℝ
,
interval: Interval
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nonzero-on: f[x]≠r0 for x ∈ I
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
implies: P
⇒ Q
,
so_apply: x[s]
,
rfun: I ⟶ℝ
Lemmas referenced :
all_wf,
nat_plus_wf,
icompact_wf,
i-approx_wf,
sq_exists_wf,
real_wf,
rless_wf,
int-to-real_wf,
i-member_wf,
rleq_wf,
rabs_wf,
i-member-approx,
rfun_wf,
interval_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setEquality,
hypothesis,
hypothesisEquality,
lambdaEquality,
lambdaFormation,
setElimination,
rename,
productEquality,
natural_numberEquality,
because_Cache,
functionEquality,
applyEquality,
dependent_functionElimination,
independent_functionElimination,
dependent_set_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality
Latex:
\mforall{}[I:Interval]. \mforall{}[f:I {}\mrightarrow{}\mBbbR{}]. (f[x]\mneq{}r0 for x \mmember{} I \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-09_18_53
Last ObjectModification:
2015_12_27-PM-11_24_52
Theory : reals
Home
Index