Nuprl Lemma : r2-det-syzygy

[p,q,r,u,v,w,x,y,z:ℝ^2].
  (((|pqw| |rpv| |qry| |prx| |quz|)
  (|rpv| |qru| |rpz| |qpy| |qwx|)
  (|qru| |pqw| |rpz| |prx| |qvy|)
  (|qru| |pqw| |rpz| |qpy| |rvx|)
  (|pqw| |rpv| |pqx| |rqz| |ruy|)
  (|rpv| |qru| |pqx| |qpy| |rwz|)
  (|rpv| |qru| |pqx| |rqz| |pwy|)
  (|qru| |pqw| |qry| |prx| |pvz|)
  (|pqw| |rpv| |qry| |rqz| |pux|))
  r0)


Proof




Definitions occuring in Statement :  r2-det: |pqr| real-vec: ^n req: y rmul: b radd: b int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  nat: uiff: uiff(P;Q) top: Top req_int_terms: t1 ≡ t2 has-value: (a)↓ it: nil: [] ml-term-to-poly: ml-term-to-poly(t) uimplies: supposing a all: x:A. B[x] true: True squash: T less_than: a < b prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n r2-det: |pqr| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_wf false_wf real-vec_wf r2-det_wf req_witness req-iff-rsub-is-0 real_term_value_const_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_add_lemma real_term_value_sub_lemma evalall-sqequal itermConstant_wf itermVar_wf itermMultiply_wf itermAdd_wf itermSubtract_wf real_polynomial_null int-to-real_wf lelt_wf rsub_wf rmul_wf radd_wf
Rules used in proof :  independent_functionElimination productElimination voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality mlComputation sqleReflexivity computeAll independent_isectElimination dependent_functionElimination baseClosed hypothesisEquality imageMemberEquality hypothesis lambdaFormation sqequalRule independent_pairFormation natural_numberEquality dependent_set_memberEquality because_Cache applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[p,q,r,u,v,w,x,y,z:\mBbbR{}\^{}2].
    (((|pqw|  *  |rpv|  *  |qry|  *  |prx|  *  |quz|)
    +  (|rpv|  *  |qru|  *  |rpz|  *  |qpy|  *  |qwx|)
    +  (|qru|  *  |pqw|  *  |rpz|  *  |prx|  *  |qvy|)
    +  (|qru|  *  |pqw|  *  |rpz|  *  |qpy|  *  |rvx|)
    +  (|pqw|  *  |rpv|  *  |pqx|  *  |rqz|  *  |ruy|)
    +  (|rpv|  *  |qru|  *  |pqx|  *  |qpy|  *  |rwz|)
    +  (|rpv|  *  |qru|  *  |pqx|  *  |rqz|  *  |pwy|)
    +  (|qru|  *  |pqw|  *  |qry|  *  |prx|  *  |pvz|)
    +  (|pqw|  *  |rpv|  *  |qry|  *  |rqz|  *  |pux|))
    =  r0)



Date html generated: 2017_10_03-AM-11_43_08
Last ObjectModification: 2017_08_11-PM-10_26_57

Theory : reals


Home Index