Nuprl Lemma : r2-straightedge-compass-ext

c,d,a:ℝ^2. ∀b:{b:ℝ^2| b ≠ a ∧ c_b_d} .
  ∃u:{u:ℝ^2| cu=cd ∧ a_b_u} 
   (∃v:ℝ^2 [(cv=cd ∧ v_b_u ∧ ((¬a_b_v) ∧ b_v_a) ∧ v_a_b))) ∧ (b ≠  (v ≠ u ∧ u ≠ b ∧ v ≠ b)))])


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q prop: so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q let: let rvlinecircle0: rvlinecircle0(n;a;b;p;q) r2-straightedge-compass rv-extend rv-extend-1 rv-line-circle-3-ext subtype_rel: A ⊆B sq_exists: x:A [B[x]] exists: x:A. B[x]
Lemmas referenced :  set_wf real-vec-sep_wf rv-be_wf real-vec_wf false_wf le_wf r2-straightedge-compass subtype_rel_self all_wf exists_wf rv-congruent_wf sq_exists_wf not_wf rv-extend rv-extend-1 rv-line-circle-3-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality productEquality hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality independent_pairFormation applyEquality instantiate functionEquality setEquality setElimination rename productElimination

Latex:
\mforall{}c,d,a:\mBbbR{}\^{}2.  \mforall{}b:\{b:\mBbbR{}\^{}2|  b  \mneq{}  a  \mwedge{}  c\_b\_d\}  .
    \mexists{}u:\{u:\mBbbR{}\^{}2|  cu=cd  \mwedge{}  a\_b\_u\} 
      (\mexists{}v:\mBbbR{}\^{}2  [(cv=cd
                      \mwedge{}  v\_b\_u
                      \mwedge{}  (\mneg{}((\mneg{}a\_b\_v)  \mwedge{}  (\mneg{}b\_v\_a)  \mwedge{}  (\mneg{}v\_a\_b)))
                      \mwedge{}  (b  \mneq{}  d  {}\mRightarrow{}  (v  \mneq{}  u  \mwedge{}  u  \mneq{}  b  \mwedge{}  v  \mneq{}  b)))])



Date html generated: 2018_05_22-PM-02_37_15
Last ObjectModification: 2018_05_18-AM-09_48_28

Theory : reals


Home Index