Nuprl Lemma : rational-fun-zero_wf

a,b:ℤ × ℕ+. ∀f:(ℤ × ℕ+) ⟶ (ℤ × ℕ+).
  ∀[g:{x:ℝx ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ]
    rational-fun-zero(f;a;b) ∈ {c:ℝ(c ∈ [ratreal(a), ratreal(b)]) ∧ (g[c] r0)}  
    supposing (ratreal(a) ≤ ratreal(b))
    ∧ (ratreal(f[a]) ≤ r0)
    ∧ (r0 ≤ ratreal(f[b]))
    ∧ (∀x,y:{x:ℝx ∈ [ratreal(a), ratreal(b)]} .  ((x y)  (g[x] g[y])))
    ∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [ratreal(a), ratreal(b)])  (g[ratreal(r)] ratreal(f[r]))))


Proof




Definitions occuring in Statement :  rational-fun-zero: rational-fun-zero(f;a;b) ratreal: ratreal(r) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y req: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q prop: so_apply: x[s] implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] sq_exists: x:A [B[x]] rational-fun-zero: rational-fun-zero(f;a;b) rational-IVT-2 top: Top sq_stable: SqStable(P) squash: T
Lemmas referenced :  rleq_wf ratreal_wf int-to-real_wf req_wf i-member_wf rccint_wf real_wf istype-int nat_plus_wf rational-IVT-2 subtype_rel_self sq_exists_wf member_rccint_lemma istype-void subtype_rel_sets sq_stable__rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut sqequalHypSubstitution hypothesis sqequalRule productIsType universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality applyEquality natural_numberEquality functionIsType because_Cache setElimination rename dependent_set_memberEquality_alt setIsType inhabitedIsType instantiate functionEquality productEquality intEquality isectEquality setEquality lambdaEquality_alt productElimination equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality_alt voidElimination closedConclusion independent_isectElimination independent_pairFormation independent_functionElimination imageMemberEquality baseClosed imageElimination equalityIstype

Latex:
\mforall{}a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  \mforall{}f:(\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}).
    \mforall{}[g:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}    {}\mrightarrow{}  \mBbbR{}]
        rational-fun-zero(f;a;b)  \mmember{}  \{c:\mBbbR{}|  (c  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (g[c]  =  r0)\}   
        supposing  (ratreal(a)  \mleq{}  ratreal(b))
        \mwedge{}  (ratreal(f[a])  \mleq{}  r0)
        \mwedge{}  (r0  \mleq{}  ratreal(f[b]))
        \mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
        \mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [ratreal(a),  ratreal(b)])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))



Date html generated: 2019_10_30-AM-10_01_54
Last ObjectModification: 2019_01_11-PM-02_36_23

Theory : reals


Home Index