Nuprl Lemma : real-matrix-scalar-mul_functionality
∀[a,b:ℕ]. ∀[c1,c2:ℝ]. ∀[A,B:ℝ(a × b)].  (c1*A ≡ c2*B) supposing ((c1 = c2) and A ≡ B)
Proof
Definitions occuring in Statement : 
real-matrix-scalar-mul: c*A, 
reqmatrix: X ≡ Y, 
rmatrix: ℝ(a × b), 
req: x = y, 
real: ℝ, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
reqmatrix: X ≡ Y, 
rmatrix: ℝ(a × b), 
real-matrix-scalar-mul: c*A, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
less_than: a < b, 
squash: ↓T, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
req_witness, 
real-matrix-scalar-mul_wf, 
subtype_rel_self, 
real_wf, 
req_wf, 
reqmatrix_wf, 
rmatrix_wf, 
istype-nat, 
rmul_wf, 
req_weakening, 
req_functionality, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
functionEquality, 
imageElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
independent_isectElimination
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[c1,c2:\mBbbR{}].  \mforall{}[A,B:\mBbbR{}(a  \mtimes{}  b)].    (c1*A  \mequiv{}  c2*B)  supposing  ((c1  =  c2)  and  A  \mequiv{}  B)
 Date html generated: 
2019_10_30-AM-08_19_41
 Last ObjectModification: 
2019_09_19-PM-01_02_14
Theory : reals
Home
Index