Nuprl Lemma : req-rdiv

x,y,z:ℝ.  (z ≠ r0  (x (y/z) ⇐⇒ (x z) y))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  rev_implies:  Q uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] false: False not: ¬A rat_term_to_real: rat_term_to_real(f;t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind pi1: fst(t) true: True rtermMultiply: left "*" right rtermDivide: num "/" denom pi2: snd(t) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf int-to-real_wf rneq_wf rmul_wf rdiv_wf req_wf assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermVar_wf istype-int req_functionality rmul_functionality req_weakening rdiv_functionality req_inversion
Rules used in proof :  natural_numberEquality hypothesis independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache lambdaEquality_alt int_eqEquality approximateComputation sqequalRule productElimination

Latex:
\mforall{}x,y,z:\mBbbR{}.    (z  \mneq{}  r0  {}\mRightarrow{}  (x  =  (y/z)  \mLeftarrow{}{}\mRightarrow{}  (x  *  z)  =  y))



Date html generated: 2019_10_29-AM-09_56_16
Last ObjectModification: 2019_04_01-PM-11_09_44

Theory : reals


Home Index