Nuprl Lemma : rfun-eq_weakening
∀[I:Interval]. ∀[f,g:I ⟶ℝ].  ((f = g ∈ I ⟶ℝ) 
⇒ rfun-eq(I;f;g))
Proof
Definitions occuring in Statement : 
rfun-eq: rfun-eq(I;f;g)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
rfun-eq: rfun-eq(I;f;g)
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
req_wf, 
squash_wf, 
true_wf, 
real_wf, 
r-ap_wf, 
i-member_wf, 
sq_stable__i-member, 
iff_weakening_equal, 
req_weakening, 
set_wf, 
equal_wf, 
rfun_wf, 
req_witness, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
because_Cache, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
universeEquality, 
productElimination, 
setEquality, 
isect_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f,g:I  {}\mrightarrow{}\mBbbR{}].    ((f  =  g)  {}\mRightarrow{}  rfun-eq(I;f;g))
Date html generated:
2017_10_03-AM-09_33_40
Last ObjectModification:
2017_07_28-AM-07_51_25
Theory : reals
Home
Index