Nuprl Lemma : rnexp-convex2
∀a,b:ℝ.  ((r0 ≤ a) 
⇒ (r0 ≤ b) 
⇒ (∀n:ℕ+. (|a - b|^n ≤ |a^n - b^n|)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
rnexp: x^k1
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
Lemmas referenced : 
rnexp-convex, 
rmax_wf, 
rmin_wf, 
rmin_ub, 
int-to-real_wf, 
rmin-rleq-rmax, 
nat_plus_wf, 
rleq_wf, 
real_wf, 
rnexp_wf, 
nat_plus_subtype_nat, 
rsub_wf, 
rabs_wf, 
rleq_weakening_equal, 
rleq_functionality, 
rnexp_functionality, 
req_inversion, 
rmax-minus-rmin, 
req_weakening, 
rleq_functionality_wrt_implies, 
rsub_functionality, 
rmax-rnexp, 
rmin-rnexp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
natural_numberEquality, 
productElimination, 
independent_pairFormation, 
applyEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a,b:\mBbbR{}.    ((r0  \mleq{}  a)  {}\mRightarrow{}  (r0  \mleq{}  b)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (|a  -  b|\^{}n  \mleq{}  |a\^{}n  -  b\^{}n|)))
Date html generated:
2016_05_18-AM-09_30_09
Last ObjectModification:
2015_12_27-PM-11_20_29
Theory : reals
Home
Index