Nuprl Lemma : rmax-rnexp
∀[n:ℕ]. ∀[x,y:ℝ].  ((r0 ≤ x) 
⇒ (r0 ≤ y) 
⇒ (rmax(x^n;y^n) = rmax(x;y)^n))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmax: rmax(x;y)
, 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
Lemmas referenced : 
rleq_antisymmetry, 
rmax_wf, 
rnexp_wf, 
rleq_wf, 
int-to-real_wf, 
req_witness, 
real_wf, 
nat_wf, 
rmax_lb, 
rnexp-rleq, 
rleq-rmax, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
less_than'_wf, 
rsub_wf, 
nat_plus_properties, 
nat_plus_wf, 
rnexp_zero_lemma, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
rleq_weakening_equal, 
rmax_ub, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rmul_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq_functionality, 
rnexp_unroll, 
rmax_functionality, 
rnexp-nonneg, 
rleq_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2, 
rmul_comm, 
rmul-rmax, 
req_weakening, 
not-rless, 
rmax_strict_lb, 
rless_wf, 
not_wf, 
rmul_preserves_rless, 
sq_stable__less_than, 
rnexp-positive, 
rless_transitivity2, 
rleq_weakening_rless, 
rless_irreflexivity, 
rless_functionality, 
rnexp-rleq-iff, 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
zero-add, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
add-swap, 
le-add-cancel2, 
minus-minus, 
minus-one-mul, 
minus-one-mul-top, 
rmul_preserves_rleq2, 
rless_transitivity1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
productElimination, 
independent_pairFormation, 
setElimination, 
rename, 
intWeakElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairEquality, 
applyEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
unionElimination, 
inlFormation, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
productEquality, 
addLevel, 
impliesFunctionality, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}].    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (rmax(x\^{}n;y\^{}n)  =  rmax(x;y)\^{}n))
Date html generated:
2017_10_03-AM-08_46_08
Last ObjectModification:
2017_07_28-AM-07_32_25
Theory : reals
Home
Index