Nuprl Lemma : rmax-rnexp

[n:ℕ]. ∀[x,y:ℝ].  ((r0 ≤ x)  (r0 ≤ y)  (rmax(x^n;y^n) rmax(x;y)^n))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) rnexp: x^k1 req: y int-to-real: r(n) real: nat: uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q cand: c∧ B all: x:A. B[x] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B nat_plus: + subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} real: sq_stable: SqStable(P) squash: T less_than': less_than'(a;b) true: True subtract: m
Lemmas referenced :  rleq_antisymmetry rmax_wf rnexp_wf rleq_wf int-to-real_wf req_witness real_wf nat_wf rmax_lb rnexp-rleq rleq-rmax nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf rsub_wf nat_plus_properties nat_plus_wf rnexp_zero_lemma le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma rleq_weakening_equal rmax_ub eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rmul_wf intformeq_wf int_formula_prop_eq_lemma rleq_functionality rnexp_unroll rmax_functionality rnexp-nonneg rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 rmul_comm rmul-rmax req_weakening not-rless rmax_strict_lb rless_wf not_wf rmul_preserves_rless sq_stable__less_than rnexp-positive rless_transitivity2 rleq_weakening_rless rless_irreflexivity rless_functionality rnexp-rleq-iff decidable__lt false_wf not-lt-2 not-equal-2 less-iff-le add_functionality_wrt_le add-associates zero-add add-zero le-add-cancel condition-implies-le add-commutes minus-add add-swap le-add-cancel2 minus-minus minus-one-mul minus-one-mul-top rmul_preserves_rleq2 rless_transitivity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination natural_numberEquality sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination isect_memberEquality because_Cache productElimination independent_pairFormation setElimination rename intWeakElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll independent_pairEquality applyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination inlFormation equalityElimination promote_hyp instantiate cumulativity productEquality addLevel impliesFunctionality addEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}].    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (rmax(x\^{}n;y\^{}n)  =  rmax(x;y)\^{}n))



Date html generated: 2017_10_03-AM-08_46_08
Last ObjectModification: 2017_07_28-AM-07_32_25

Theory : reals


Home Index