Nuprl Lemma : rmul-rmax

[x,y,z:ℝ].  ((r0 ≤ z)  ((z rmax(x;y)) rmax(z x;z y)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B real: rmax: rmax(x;y) all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q reg-seq-mul: reg-seq-mul(x;y) bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) guard: {T} ge: i ≥  int_nzero: -o nequal: a ≠ b ∈  true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b squash: T lt_int: i <j subtract: m cand: c∧ B rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) absval: |i|
Lemmas referenced :  req-iff-bdd-diff rmul_wf rmax_wf rleq_wf int-to-real_wf req_witness real_wf reg-seq-mul_wf imax_wf nat_plus_wf bdd-diff_functionality rmul-bdd-diff-reg-seq-mul rmax_functionality_wrt_bdd-diff canonical-bound_wf add_nat_wf multiply_nat_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le subtype_rel_set int_upper_wf nat_wf le_wf absval_wf istype-int_upper upper_subtype_nat istype-false nat_properties add-is-int-iff multiply-is-int-iff intformand_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma false_wf subtract_wf divide_wfa nat_plus_properties intformless_wf int_formula_prop_less_lemma int_subtype_base nequal_wf decidable__equal_int le_int_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff assert_wf squash_wf true_wf int_nzero_wf imax_unfold istype-nat subtype_rel_self iff_weakening_equal absval_ifthenelse minus-one-mul mul-commutes add-mul-special zero-mul neg-approx-of-nonneg-real mul_preserves_le decidable__lt istype-less_than div_preserves_le le_functionality int-triangle-inequality2 le_weakening sq_stable__le int_upper_properties absval_div_nat absval_mul div-cancel multiply_functionality_wrt_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination universeIsType natural_numberEquality sqequalRule lambdaEquality_alt dependent_functionElimination independent_functionElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt because_Cache isectIsTypeImplies applyEquality setElimination rename dependent_pairFormation_alt dependent_set_memberEquality_alt addEquality multiplyEquality equalityTransitivity equalitySymmetry unionElimination approximateComputation voidElimination functionEquality independent_pairFormation applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed int_eqEquality equalityIstype functionIsType sqequalBase intEquality equalityElimination instantiate imageElimination imageMemberEquality universeEquality minusEquality cumulativity

Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((r0  \mleq{}  z)  {}\mRightarrow{}  ((z  *  rmax(x;y))  =  rmax(z  *  x;z  *  y)))



Date html generated: 2019_10_29-AM-10_03_54
Last ObjectModification: 2019_04_01-PM-11_11_22

Theory : reals


Home Index