Nuprl Lemma : rmul-rmax
∀[x,y,z:ℝ].  ((r0 ≤ z) 
⇒ ((z * rmax(x;y)) = rmax(z * x;z * y)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmax: rmax(x;y)
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
rmax: rmax(x;y)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
ge: i ≥ j 
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
squash: ↓T
, 
lt_int: i <z j
, 
subtract: n - m
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
absval: |i|
Lemmas referenced : 
req-iff-bdd-diff, 
rmul_wf, 
rmax_wf, 
rleq_wf, 
int-to-real_wf, 
req_witness, 
real_wf, 
reg-seq-mul_wf, 
imax_wf, 
nat_plus_wf, 
bdd-diff_functionality, 
rmul-bdd-diff-reg-seq-mul, 
rmax_functionality_wrt_bdd-diff, 
canonical-bound_wf, 
add_nat_wf, 
multiply_nat_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel_set, 
int_upper_wf, 
nat_wf, 
le_wf, 
absval_wf, 
istype-int_upper, 
upper_subtype_nat, 
istype-false, 
nat_properties, 
add-is-int-iff, 
multiply-is-int-iff, 
intformand_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
subtract_wf, 
divide_wfa, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_subtype_base, 
nequal_wf, 
decidable__equal_int, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
squash_wf, 
true_wf, 
int_nzero_wf, 
imax_unfold, 
istype-nat, 
subtype_rel_self, 
iff_weakening_equal, 
absval_ifthenelse, 
minus-one-mul, 
mul-commutes, 
add-mul-special, 
zero-mul, 
neg-approx-of-nonneg-real, 
mul_preserves_le, 
decidable__lt, 
istype-less_than, 
div_preserves_le, 
le_functionality, 
int-triangle-inequality2, 
le_weakening, 
sq_stable__le, 
int_upper_properties, 
absval_div_nat, 
absval_mul, 
div-cancel, 
multiply_functionality_wrt_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
universeIsType, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
applyEquality, 
setElimination, 
rename, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
addEquality, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
approximateComputation, 
voidElimination, 
functionEquality, 
independent_pairFormation, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
int_eqEquality, 
equalityIstype, 
functionIsType, 
sqequalBase, 
intEquality, 
equalityElimination, 
instantiate, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
minusEquality, 
cumulativity
Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((r0  \mleq{}  z)  {}\mRightarrow{}  ((z  *  rmax(x;y))  =  rmax(z  *  x;z  *  y)))
Date html generated:
2019_10_29-AM-10_03_54
Last ObjectModification:
2019_04_01-PM-11_11_22
Theory : reals
Home
Index