Nuprl Lemma : neg-approx-of-nonneg-real
∀x:ℝ. ((r0 ≤ x) ⇒ (∀n:ℕ+. (((x n) ≤ 0) ⇒ (|x n| ≤ 2))))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
int-to-real: r(n), 
real: ℝ, 
absval: |i|, 
nat_plus: ℕ+, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
rational-approx: (x within 1/n), 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
uiff: uiff(P;Q), 
rge: x ≥ y, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
rdiv: (x/y), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
rational-approx-property, 
rabs-difference-bound-rleq, 
rational-approx_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
le_wf, 
nat_plus_wf, 
rleq_wf, 
real_wf, 
radd_wf, 
int-rdiv_wf, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
rleq_functionality, 
req_weakening, 
radd_functionality, 
int-rdiv-req, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
req-int-fractions, 
mul_nat_plus, 
less_than_wf, 
decidable__equal_int, 
rmul_preserves_rleq2, 
rleq-int, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
less_than'_wf, 
rsub_wf, 
rmul_wf, 
rinv_wf2, 
req_transitivity, 
radd-rdiv, 
rdiv_functionality, 
radd-int, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul_functionality, 
rmul-rinv, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
itermAdd_wf, 
int_term_value_minus_lemma, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
productElimination, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
dependent_set_memberEquality, 
multiplyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
imageMemberEquality, 
addEquality, 
isect_memberFormation, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
imageElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (((x  n)  \mleq{}  0)  {}\mRightarrow{}  (|x  n|  \mleq{}  2))))
Date html generated:
2017_10_03-AM-08_45_26
Last ObjectModification:
2017_07_28-AM-07_32_04
Theory : reals
Home
Index