Nuprl Lemma : neg-approx-of-nonneg-real

x:ℝ((r0 ≤ x)  (∀n:ℕ+(((x n) ≤ 0)  (|x n| ≤ 2))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y int-to-real: r(n) real: absval: |i| nat_plus: + le: A ≤ B all: x:A. B[x] implies:  Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] real: nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: rational-approx: (x within 1/n) int_nzero: -o nequal: a ≠ b ∈  subtype_rel: A ⊆B le: A ≤ B uiff: uiff(P;Q) rge: x ≥ y less_than: a < b squash: T less_than': less_than'(a;b) true: True rleq: x ≤ y rnonneg: rnonneg(x) rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  rational-approx-property rabs-difference-bound-rleq rational-approx_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf le_wf nat_plus_wf rleq_wf real_wf radd_wf int-rdiv_wf intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma equal-wf-base int_subtype_base nequal_wf rleq_functionality req_weakening radd_functionality int-rdiv-req rleq_functionality_wrt_implies rleq_weakening_equal req-int-fractions mul_nat_plus less_than_wf decidable__equal_int rmul_preserves_rleq2 rleq-int decidable__le intformle_wf int_formula_prop_le_lemma less_than'_wf rsub_wf rmul_wf rinv_wf2 req_transitivity radd-rdiv rdiv_functionality radd-int real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_functionality rmul-rinv absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf itermAdd_wf int_term_value_minus_lemma int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache isectElimination setElimination rename hypothesis natural_numberEquality independent_isectElimination sqequalRule inrFormation productElimination independent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality dependent_set_memberEquality multiplyEquality baseApply closedConclusion baseClosed imageMemberEquality addEquality isect_memberFormation independent_pairEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry equalityElimination lessCases sqequalAxiom imageElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (((x  n)  \mleq{}  0)  {}\mRightarrow{}  (|x  n|  \mleq{}  2))))



Date html generated: 2017_10_03-AM-08_45_26
Last ObjectModification: 2017_07_28-AM-07_32_04

Theory : reals


Home Index