Nuprl Lemma : div_preserves_le
∀[a,b:ℤ]. ∀[n:ℕ+].  ((a ≤ b) 
⇒ ((a ÷ n) ≤ (b ÷ n)))
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
divide: n ÷ m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
nat_plus: ℕ+
, 
not: ¬A
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
int_lower: {...i}
, 
gt: i > j
, 
ge: i ≥ j 
Lemmas referenced : 
int_term_value_minus_lemma, 
itermMinus_wf, 
div_bounds_2, 
div_bounds_1, 
rem_bounds_2, 
rem_bounds_1, 
false_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract-is-int-iff, 
add-is-int-iff, 
div_rem_sum2, 
add-commutes, 
one-mul, 
mul-commutes, 
mul-distributes, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
equal_wf, 
nat_plus_subtype_nat, 
mul_preserves_le, 
nat_plus_wf, 
less_than'_wf, 
le_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
decidable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
divideEquality, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
unionElimination, 
addEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
multiplyEquality, 
setEquality, 
independent_functionElimination, 
remainderEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_set_memberEquality, 
imageElimination, 
minusEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  \mleq{}  b)  {}\mRightarrow{}  ((a  \mdiv{}  n)  \mleq{}  (b  \mdiv{}  n)))
Date html generated:
2016_05_14-AM-07_24_32
Last ObjectModification:
2016_01_14-PM-10_03_07
Theory : int_2
Home
Index