Nuprl Lemma : div_preserves_le

[a,b:ℤ]. ∀[n:ℕ+].  ((a ≤ b)  ((a ÷ n) ≤ (b ÷ n)))


Proof




Definitions occuring in Statement :  nat_plus: + uall: [x:A]. B[x] le: A ≤ B implies:  Q divide: n ÷ m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] nequal: a ≠ b ∈  nat_plus: + not: ¬A uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q le: A ≤ B subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} uiff: uiff(P;Q) nat: less_than: a < b squash: T int_lower: {...i} gt: i > j ge: i ≥ 
Lemmas referenced :  int_term_value_minus_lemma itermMinus_wf div_bounds_2 div_bounds_1 rem_bounds_2 rem_bounds_1 false_wf int_term_value_subtract_lemma itermSubtract_wf subtract-is-int-iff add-is-int-iff div_rem_sum2 add-commutes one-mul mul-commutes mul-distributes nequal_wf less_than_wf subtype_rel_sets equal_wf nat_plus_subtype_nat mul_preserves_le nat_plus_wf less_than'_wf le_wf int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermAdd_wf intformle_wf intformnot_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin divideEquality because_Cache isectElimination hypothesisEquality hypothesis setElimination rename natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll unionElimination addEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry applyEquality multiplyEquality setEquality independent_functionElimination remainderEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed dependent_set_memberEquality imageElimination minusEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  \mleq{}  b)  {}\mRightarrow{}  ((a  \mdiv{}  n)  \mleq{}  (b  \mdiv{}  n)))



Date html generated: 2016_05_14-AM-07_24_32
Last ObjectModification: 2016_01_14-PM-10_03_07

Theory : int_2


Home Index