Nuprl Lemma : separated-decider-not-extensional
∀a,b:ℝ.  ((a < b) ⇒ (∀d:∀u:ℝ. ((a < u) ∨ (u < b)). (¬¬(∃x,y:ℝ. ((x = y) ∧ (↑isl(d x)) ∧ (↑isr(d y)))))))
Proof
Definitions occuring in Statement : 
rless: x < y, 
req: x = y, 
real: ℝ, 
assert: ↑b, 
isr: isr(x), 
isl: isl(x), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
so_apply: x[s], 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
bfalse: ff, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
isr: isr(x), 
guard: {T}
Lemmas referenced : 
no-real-separation-corollary, 
assert_wf, 
isl_wf, 
rless_wf, 
real_wf, 
or_wf, 
isr_wf, 
not_wf, 
exists_wf, 
req_wf, 
all_wf, 
nat_plus_properties, 
full-omega-unsat, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
equal_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
productEquality, 
dependent_pairFormation, 
unionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
imageElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation, 
inrFormation
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)  {}\mRightarrow{}  (\mforall{}d:\mforall{}u:\mBbbR{}.  ((a  <  u)  \mvee{}  (u  <  b)).  (\mneg{}\mneg{}(\mexists{}x,y:\mBbbR{}.  ((x  =  y)  \mwedge{}  (\muparrow{}isl(d  x))  \mwedge{}  (\muparrow{}isr(d  y)))))))
 Date html generated: 
2017_10_03-AM-10_02_05
 Last ObjectModification: 
2017_06_30-PM-00_37_20
Theory : reals
Home
Index