Nuprl Lemma : small-ctrex1_wf

small-ctrex1() ∈ ℝ


Proof




Definitions occuring in Statement :  small-ctrex1: small-ctrex1() real: member: t ∈ T
Definitions unfolded in proof :  small-ctrex1: small-ctrex1() uiff: uiff(P;Q) nat_plus: + rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q rneq: x ≠ y guard: {T} all: x:A. B[x] sq_type: SQType(T) uimplies: supposing a nequal: a ≠ b ∈  int_nzero: -o prop: implies:  Q not: ¬A false: False le: A ≤ B nat: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T true: True efficient-exp-ext fastexp: i^n less_than': less_than'(a;b) squash: T less_than: a < b rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B exists: x:A. B[x] reg-seq-mul: reg-seq-mul(x;y) lt_int: i <j bnot: ¬bb le_int: i ≤j rroot-odd: rroot-odd(i;x) canonical-bound: canonical-bound(r) imax: imax(a;b) bfalse: ff rmul: b rminus: -(x) genrec-ap: genrec-ap primrec: primrec(n;b;c) exp: i^n integer-nth-root-ext iroot: iroot(n;x) it: nil: [] int-rdiv: (a)/k1 absval: |i| rabs: |x| subtract: m rroot-abs: rroot-abs(i;x) btrue: tt modulus: mod n eq_int: (i =z j) isEven: isEven(n) ifthenelse: if then else fi  rroot: rroot(i;x) rsub: y cons: [a b] cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) reg-seq-list-add: reg-seq-list-add(L) accelerate: accelerate(k;f) radd: b un-ctrex1: un-ctrex1(x) int-to-real: r(n)
Lemmas referenced :  efficient-exp-ext integer-nth-root-ext equal-wf-base rless-iff2 rleq_weakening_rless int-rdiv-req req_weakening rleq_functionality fastexp_wf false_wf le_wf un-ctrex1_wf int-rdiv_wf subtype_base_sq int_subtype_base true_wf nequal_wf rleq_wf int-to-real_wf rdiv_wf rless-int rless_wf rleq-int-fractions2 less_than_wf
Rules used in proof :  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution multiplyEquality productElimination inrFormation minusEquality voidElimination independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination intEquality cumulativity instantiate addLevel because_Cache baseClosed imageMemberEquality introduction hypothesisEquality hypothesis lambdaFormation dependent_set_memberEquality thin isectElimination sqequalHypSubstitution lemma_by_obid natural_numberEquality independent_pairFormation sqequalRule cut applyEquality addEquality dependent_pairFormation

Latex:
small-ctrex1()  \mmember{}  \mBbbR{}



Date html generated: 2016_05_18-AM-10_48_15
Last ObjectModification: 2016_01_17-AM-00_25_40

Theory : reals


Home Index