Nuprl Lemma : square-positive-iff

x:ℝ(r0 < (x x) ⇐⇒ x ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q uall: [x:A]. B[x] prop: nat: rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False
Lemmas referenced :  rnexp2-positive-iff rless_wf int-to-real_wf rmul_wf rneq_wf real_wf rnexp_wf nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le rless_functionality req_weakening rnexp2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination independent_pairFormation universeIsType isectElimination natural_numberEquality promote_hyp because_Cache dependent_set_memberEquality_alt setElimination rename unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule

Latex:
\mforall{}x:\mBbbR{}.  (r0  <  (x  *  x)  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)



Date html generated: 2019_10_29-AM-10_07_42
Last ObjectModification: 2019_03_20-PM-00_50_44

Theory : reals


Home Index