Nuprl Lemma : square-positive-iff
∀x:ℝ. (r0 < (x * x) ⇐⇒ x ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rless: x < y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
nat: ℕ, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
false: False
Lemmas referenced : 
rnexp2-positive-iff, 
rless_wf, 
int-to-real_wf, 
rmul_wf, 
rneq_wf, 
real_wf, 
rnexp_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
rless_functionality, 
req_weakening, 
rnexp2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
promote_hyp, 
because_Cache, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule
Latex:
\mforall{}x:\mBbbR{}.  (r0  <  (x  *  x)  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0)
 Date html generated: 
2019_10_29-AM-10_07_42
 Last ObjectModification: 
2019_03_20-PM-00_50_44
Theory : reals
Home
Index