Nuprl Lemma : square-rleq-1-iff
∀x:ℝ. (x^2 ≤ r1 ⇐⇒ |x| ≤ r1)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rabs: |x|, 
rnexp: x^k1, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
true: True, 
nat: ℕ, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
guard: {T}
Lemmas referenced : 
rnexp-rleq-iff, 
rabs_wf, 
int-to-real_wf, 
zero-rleq-rabs, 
rleq-int, 
false_wf, 
less_than_wf, 
real_wf, 
rnexp_wf, 
le_wf, 
rleq_wf, 
iff_wf, 
rleq_functionality, 
req_inversion, 
rabs-rnexp, 
req_weakening, 
rmul_wf, 
rleq_weakening_equal, 
rnexp2-nonneg, 
rabs-of-nonneg, 
rleq_functionality_wrt_implies, 
rnexp2, 
rmul-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
addLevel, 
impliesFunctionality, 
independent_isectElimination, 
promote_hyp, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x:\mBbbR{}.  (x\^{}2  \mleq{}  r1  \mLeftarrow{}{}\mRightarrow{}  |x|  \mleq{}  r1)
Date html generated:
2016_10_26-AM-09_14_30
Last ObjectModification:
2016_10_09-PM-07_11_17
Theory : reals
Home
Index