Nuprl Lemma : square-rleq-1-iff

x:ℝ(x^2 ≤ r1 ⇐⇒ |x| ≤ r1)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: nat_plus: + less_than: a < b squash: T true: True nat: uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}
Lemmas referenced :  rnexp-rleq-iff rabs_wf int-to-real_wf zero-rleq-rabs rleq-int false_wf less_than_wf real_wf rnexp_wf le_wf rleq_wf iff_wf rleq_functionality req_inversion rabs-rnexp req_weakening rmul_wf rleq_weakening_equal rnexp2-nonneg rabs-of-nonneg rleq_functionality_wrt_implies rnexp2 rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis natural_numberEquality independent_functionElimination productElimination sqequalRule independent_pairFormation dependent_set_memberEquality imageMemberEquality baseClosed because_Cache addLevel impliesFunctionality independent_isectElimination promote_hyp multiplyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbR{}.  (x\^{}2  \mleq{}  r1  \mLeftarrow{}{}\mRightarrow{}  |x|  \mleq{}  r1)



Date html generated: 2016_10_26-AM-09_14_30
Last ObjectModification: 2016_10_09-PM-07_11_17

Theory : reals


Home Index