Nuprl Lemma : square-rleq-1-iff
∀x:ℝ. (x^2 ≤ r1
⇐⇒ |x| ≤ r1)
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rabs: |x|
,
rnexp: x^k1
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
prop: ℙ
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
true: True
,
nat: ℕ
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
guard: {T}
Lemmas referenced :
rnexp-rleq-iff,
rabs_wf,
int-to-real_wf,
zero-rleq-rabs,
rleq-int,
false_wf,
less_than_wf,
real_wf,
rnexp_wf,
le_wf,
rleq_wf,
iff_wf,
rleq_functionality,
req_inversion,
rabs-rnexp,
req_weakening,
rmul_wf,
rleq_weakening_equal,
rnexp2-nonneg,
rabs-of-nonneg,
rleq_functionality_wrt_implies,
rnexp2,
rmul-int
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
hypothesisEquality,
hypothesis,
natural_numberEquality,
independent_functionElimination,
productElimination,
sqequalRule,
independent_pairFormation,
dependent_set_memberEquality,
imageMemberEquality,
baseClosed,
because_Cache,
addLevel,
impliesFunctionality,
independent_isectElimination,
promote_hyp,
multiplyEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}x:\mBbbR{}. (x\^{}2 \mleq{} r1 \mLeftarrow{}{}\mRightarrow{} |x| \mleq{} r1)
Date html generated:
2016_10_26-AM-09_14_30
Last ObjectModification:
2016_10_09-PM-07_11_17
Theory : reals
Home
Index