Nuprl Lemma : cosh_functionality
∀[x,y:ℝ].  cosh(x) = cosh(y) supposing x = y
Proof
Definitions occuring in Statement : 
cosh: cosh(x)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cosh: cosh(x)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
cosh_wf, 
req_wf, 
real_wf, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
radd_wf, 
expr_wf, 
rexp_wf, 
rminus_wf, 
req_weakening, 
req_functionality, 
int-rdiv_functionality, 
radd_functionality, 
expr-req, 
rexp_functionality, 
rminus_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
natural_numberEquality, 
addLevel, 
lambdaFormation, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
voidElimination, 
baseClosed, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    cosh(x)  =  cosh(y)  supposing  x  =  y
Date html generated:
2017_10_04-PM-10_40_32
Last ObjectModification:
2017_06_21-PM-01_01_38
Theory : reals_2
Home
Index