Nuprl Lemma : cosh_functionality

[x,y:ℝ].  cosh(x) cosh(y) supposing y


Proof




Definitions occuring in Statement :  cosh: cosh(x) req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cosh: cosh(x) implies:  Q prop: int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness cosh_wf req_wf real_wf int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf radd_wf expr_wf rexp_wf rminus_wf req_weakening req_functionality int-rdiv_functionality radd_functionality expr-req rexp_functionality rminus_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry dependent_set_memberEquality natural_numberEquality addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination voidElimination baseClosed applyEquality lambdaEquality setElimination rename setEquality productElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    cosh(x)  =  cosh(y)  supposing  x  =  y



Date html generated: 2017_10_04-PM-10_40_32
Last ObjectModification: 2017_06_21-PM-01_01_38

Theory : reals_2


Home Index