Nuprl Lemma : pi-irrational-instance
∃k:ℕ. (((r1)/k + 2 < |(r(22))/7 - 4 * MachinPi4()|) ∧ (|(r(22))/7 - 4 * MachinPi4()| < (r1)/k + 1))
Proof
Definitions occuring in Statement : 
MachinPi4: MachinPi4(), 
rless: x < y, 
rabs: |x|, 
int-rdiv: (a)/k1, 
int-rmul: k1 * a, 
rsub: x - y, 
int-to-real: r(n), 
nat: ℕ, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
exists: ∃x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ, 
int-rdiv: (a)/k1, 
divide: n ÷ m, 
int-to-real: r(n), 
rabs: |x|, 
absval: |i|, 
rsub: x - y, 
radd: a + b, 
accelerate: accelerate(k;f), 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
cons: [a / b], 
rminus: -(x), 
int-rmul: k1 * a, 
MachinPi4: MachinPi4(), 
atan: atan(a;x), 
atan_approx: atan_approx(a;x;M), 
atan-log: atan-log(a;M), 
gen_log_aux: gen_log_aux(p;c;x;i;n;M), 
ifthenelse: if b then t else f fi , 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
exp: i^n, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
subtract: n - m, 
btrue: tt, 
bfalse: ff, 
atan-approx: atan-approx(k;x;N), 
poly-approx: poly-approx(a;x;k;N), 
rmul: a * b, 
imax: imax(a;b), 
reg-seq-mul: reg-seq-mul(x;y), 
poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k), 
eq_int: (i =z j), 
remainder: n rem m, 
nil: [], 
it: ⋅, 
less_than: a < b, 
squash: ↓T, 
true: True, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
subtype_rel: A ⊆r B, 
ge: i ≥ j , 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
istype-void, 
istype-le, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
int-to-real_wf, 
rabs_wf, 
rsub_wf, 
int-rmul_wf, 
MachinPi4_wf, 
rless_wf, 
nat_properties, 
intformand_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
nat_plus_properties, 
set_subtype_base, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
voidElimination, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberFormation_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
universeIsType, 
imageMemberEquality, 
baseClosed, 
addEquality, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
sqequalBase, 
closedConclusion, 
because_Cache, 
productIsType, 
setElimination, 
rename, 
int_eqEquality, 
inhabitedIsType, 
baseApply
Latex:
\mexists{}k:\mBbbN{}.  (((r1)/k  +  2  <  |(r(22))/7  -  4  *  MachinPi4()|)  \mwedge{}  (|(r(22))/7  -  4  *  MachinPi4()|  <  (r1)/k  +  1))
Date html generated:
2019_10_31-AM-06_06_11
Last ObjectModification:
2019_05_17-PM-02_57_27
Theory : reals_2
Home
Index