Nuprl Lemma : radd*_functionality_wrt_rleq*
∀[x,y,u,v:ℝ*].  (x ≤ y 
⇒ u ≤ v 
⇒ x + u ≤ y + v)
Proof
Definitions occuring in Statement : 
rleq*: x ≤ y
, 
radd*: x + y
, 
real*: ℝ*
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rleq*: x ≤ y
, 
rrel*: R*(x,y)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
radd*: x + y
, 
rfun*2: f*(x;y)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
real*: ℝ*
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
imax_wf, 
imax_nat, 
nat_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
le_wf, 
less_than'_wf, 
rsub_wf, 
radd*_wf, 
int_upper_subtype_nat, 
int_upper_properties, 
nat_plus_properties, 
nat_plus_wf, 
int_upper_wf, 
all_wf, 
rleq_wf, 
rleq*_wf, 
real*_wf, 
radd_wf, 
int_upper_subtype_int_upper, 
imax_ub, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
radd_functionality_wrt_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
sqequalRule, 
dependent_set_memberEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
independent_pairEquality, 
applyEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}[x,y,u,v:\mBbbR{}*].    (x  \mleq{}  y  {}\mRightarrow{}  u  \mleq{}  v  {}\mRightarrow{}  x  +  u  \mleq{}  y  +  v)
Date html generated:
2018_05_22-PM-03_17_22
Last ObjectModification:
2017_10_06-PM-05_43_29
Theory : reals_2
Home
Index