Nuprl Lemma : adjunction-monad_wf

[A,B:SmallCategory]. ∀[F:Functor(A;B)]. ∀[G:Functor(B;A)]. ∀[adj:F -| G].  (adjMonad(adj) ∈ Monad(A))


Proof




Definitions occuring in Statement :  adjunction-monad: adjMonad(adj) cat-monad: Monad(C) counit-unit-adjunction: -| G cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] adjunction-monad: adjMonad(adj) member: t ∈ T counit-unit-adjunction: -| G pi2: snd(t) pi1: fst(t) uimplies: supposing a all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat-trans: nat-trans(C;D;F;G) id_functor: 1 functor-comp: functor-comp(F;G) top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta) and: P ∧ Q true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-monad_wf functor-comp_wf counit-unit-adjunction_wf cat-functor_wf small-category_wf cat-ob_wf mk-nat-trans_wf ob_mk_functor_lemma arrow_mk_functor_lemma functor-arrow_wf functor-ob_wf cat-arrow_wf cat-comp_wf equal_wf squash_wf true_wf functor-arrow-comp iff_weakening_equal ap_mk_nat_trans_lemma cat-id_wf functor-arrow-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule productElimination independent_isectElimination because_Cache dependent_functionElimination lambdaEquality isect_memberEquality voidElimination voidEquality applyEquality functionExtensionality lambdaFormation natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[A,B:SmallCategory].  \mforall{}[F:Functor(A;B)].  \mforall{}[G:Functor(B;A)].  \mforall{}[adj:F  -|  G].
    (adjMonad(adj)  \mmember{}  Monad(A))



Date html generated: 2017_10_05-AM-00_52_40
Last ObjectModification: 2017_07_28-AM-09_20_58

Theory : small!categories


Home Index