Nuprl Lemma : adjunction-monad_wf
∀[A,B:SmallCategory]. ∀[F:Functor(A;B)]. ∀[G:Functor(B;A)]. ∀[adj:F -| G].  (adjMonad(adj) ∈ Monad(A))
Proof
Definitions occuring in Statement : 
adjunction-monad: adjMonad(adj)
, 
cat-monad: Monad(C)
, 
counit-unit-adjunction: F -| G
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
adjunction-monad: adjMonad(adj)
, 
member: t ∈ T
, 
counit-unit-adjunction: F -| G
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat-trans: nat-trans(C;D;F;G)
, 
id_functor: 1
, 
functor-comp: functor-comp(F;G)
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
counit-unit-equations: counit-unit-equations(D;C;F;G;eps;eta)
, 
and: P ∧ Q
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-monad_wf, 
functor-comp_wf, 
counit-unit-adjunction_wf, 
cat-functor_wf, 
small-category_wf, 
cat-ob_wf, 
mk-nat-trans_wf, 
ob_mk_functor_lemma, 
arrow_mk_functor_lemma, 
functor-arrow_wf, 
functor-ob_wf, 
cat-arrow_wf, 
cat-comp_wf, 
equal_wf, 
squash_wf, 
true_wf, 
functor-arrow-comp, 
iff_weakening_equal, 
ap_mk_nat_trans_lemma, 
cat-id_wf, 
functor-arrow-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
functionExtensionality, 
lambdaFormation, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[A,B:SmallCategory].  \mforall{}[F:Functor(A;B)].  \mforall{}[G:Functor(B;A)].  \mforall{}[adj:F  -|  G].
    (adjMonad(adj)  \mmember{}  Monad(A))
Date html generated:
2017_10_05-AM-00_52_40
Last ObjectModification:
2017_07_28-AM-09_20_58
Theory : small!categories
Home
Index