Nuprl Lemma : presheaf-subset-and

[C:SmallCategory]. ∀[F:Presheaf(C)]. ∀[P,Q:I:cat-ob(C) ⟶ (ob(F) I) ⟶ ℙ].
  ext-equal-presheaves(C;F|I,rho.P[I;rho]|I,rho.Q[I;rho];F|I,rho.P[I;rho] ∧ Q[I;rho]) 
  supposing stable-element-predicate(C;F;I,rho.P[I;rho]) ∧ stable-element-predicate(C;F;I,rho.Q[I;rho])


Proof




Definitions occuring in Statement :  presheaf-subset: F|I,rho.P[I; rho] stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) ext-equal-presheaves: ext-equal-presheaves(C;F;G) presheaf: Presheaf(C) functor-ob: ob(F) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q ext-equal-presheaves: ext-equal-presheaves(C;F;G) all: x:A. B[x] presheaf-subset: F|I,rho.P[I; rho] mk-presheaf: mk-presheaf top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] ext-eq: A ≡ B subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] presheaf: Presheaf(C) cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat implies:  Q cand: c∧ B cat-arrow: cat-arrow(C) pi2: snd(t) guard: {T} stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
Lemmas referenced :  ob_mk_functor_lemma arrow_mk_functor_lemma cat-arrow_wf cat-ob_wf stable-element-predicate_wf functor-ob_wf op-cat_wf small-category-subtype type-cat_wf subtype_rel-equal cat_ob_op_lemma presheaf_wf small-category_wf subtype_rel_sets subtype_rel_self functor-arrow_wf op-cat-arrow
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation lambdaFormation sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis because_Cache applyEquality isectElimination hypothesisEquality independent_pairEquality lambdaEquality axiomEquality productEquality functionExtensionality instantiate independent_isectElimination equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality setElimination rename dependent_set_memberEquality setEquality independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].  \mforall{}[P,Q:I:cat-ob(C)  {}\mrightarrow{}  (ob(F)  I)  {}\mrightarrow{}  \mBbbP{}].
    ext-equal-presheaves(C;F|I,rho.P[I;rho]|I,rho.Q[I;rho];F|I,rho.P[I;rho]  \mwedge{}  Q[I;rho]) 
    supposing  stable-element-predicate(C;F;I,rho.P[I;rho])
    \mwedge{}  stable-element-predicate(C;F;I,rho.Q[I;rho])



Date html generated: 2017_10_05-AM-00_51_10
Last ObjectModification: 2017_10_03-PM-03_30_44

Theory : small!categories


Home Index