Nuprl Lemma : in-open-union
∀[X:Type]. ∀[x:X]. ∀[A:ℕ ⟶ Open(X)].  (x ∈ open-union(n.A[n]) 
⇐⇒ ¬¬(∃n:ℕ. ((A[n] x) = ⊤ ∈ Sierpinski)))
Proof
Definitions occuring in Statement : 
in-open: x ∈ A
, 
open-union: open-union(n.A[n])
, 
Open: Open(X)
, 
Sierpinski: Sierpinski
, 
Sierpinski-top: ⊤
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
open-union: open-union(n.A[n])
, 
in-open: x ∈ A
, 
Open: Open(X)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
not_wf, 
exists_wf, 
nat_wf, 
equal_wf, 
Sierpinski_wf, 
Open_wf, 
Sierpinski-top_wf, 
subtype-Sierpinski, 
in-open_wf, 
open-union_wf, 
sp-lub-is-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[x:X].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Open(X)].    (x  \mmember{}  open-union(n.A[n])  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  ((A[n]  x)  =  \mtop{})))
Date html generated:
2019_10_31-AM-07_19_02
Last ObjectModification:
2015_12_28-AM-11_21_48
Theory : synthetic!topology
Home
Index