Nuprl Lemma : LV_Index_wf
∀[lval:C_LVALUE()]. ∀[idx:ℤ].  (LV_Index(lval;idx) ∈ C_LVALUE())
Proof
Definitions occuring in Statement : 
LV_Index: LV_Index(lval;idx), 
C_LVALUE: C_LVALUE(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
C_LVALUE: C_LVALUE(), 
LV_Index: LV_Index(lval;idx), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
C_LVALUEco_size: C_LVALUEco_size(p), 
C_LVALUE_size: C_LVALUE_size(p), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
C_LVALUEco-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
C_LOCATION_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
C_LVALUEco_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
C_LVALUE_size_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
C_LVALUEco_size_wf, 
C_LVALUE_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
dependent_pairEquality, 
tokenEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
intEquality, 
isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
productEquality, 
atomEquality, 
voidEquality, 
equalityEquality, 
applyEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaEquality
Latex:
\mforall{}[lval:C\_LVALUE()].  \mforall{}[idx:\mBbbZ{}].    (LV\_Index(lval;idx)  \mmember{}  C\_LVALUE())
 Date html generated: 
2016_05_16-AM-08_46_54
 Last ObjectModification: 
2015_12_28-PM-06_57_12
Theory : C-semantics
Home
Index