Nuprl Lemma : ml-absval-sq

[x:ℤ]. (ml-absval(x) |x|)


Proof




Definitions occuring in Statement :  ml-absval: ml-absval(x) absval: |i| uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  absval: |i| ml-absval: ml-absval(x) ml_apply: f(x) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce value-type-has-value int-value-type lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity

Latex:
\mforall{}[x:\mBbbZ{}].  (ml-absval(x)  \msim{}  |x|)



Date html generated: 2017_09_29-PM-05_51_39
Last ObjectModification: 2017_05_22-PM-02_12_05

Theory : ML


Home Index