Nuprl Lemma : add-nonneg
∀x,y:ℤ.  (0 ≤ (x + y)) supposing ((0 ≤ x) and (0 ≤ y))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
Lemmas referenced : 
decidable__int_equal, 
subtype_base_sq, 
int_subtype_base, 
less_than_wf, 
add-zero, 
equal_wf, 
zero-add, 
or_wf, 
iff_weakening_uiff, 
le_wf, 
le-iff-less-or-equal, 
less_than'_wf, 
add-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
isect_memberFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesis, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
inrFormation, 
natural_numberEquality, 
addEquality, 
inlFormation, 
voidElimination, 
addLevel, 
introduction, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    (0  \mleq{}  (x  +  y))  supposing  ((0  \mleq{}  x)  and  (0  \mleq{}  y))
Date html generated:
2016_05_13-PM-03_30_32
Last ObjectModification:
2015_12_26-AM-09_46_51
Theory : arithmetic
Home
Index