Nuprl Lemma : le-add-cancel3
∀[c,d,t,t':ℤ].  uiff((c + t) ≤ (d + t');c ≤ d) supposing t = t' ∈ ℤ
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul, 
add-associates, 
add-is-int-iff, 
add_functionality_wrt_le, 
le_reflexive, 
int_subtype_base, 
subtype_base_sq, 
equal_wf, 
less_than'_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
addEquality, 
hypothesis, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
minusEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
voidEquality, 
natural_numberEquality
Latex:
\mforall{}[c,d,t,t':\mBbbZ{}].    uiff((c  +  t)  \mleq{}  (d  +  t');c  \mleq{}  d)  supposing  t  =  t'
Date html generated:
2016_05_13-PM-03_31_19
Last ObjectModification:
2016_01_14-PM-06_41_22
Theory : arithmetic
Home
Index