Nuprl Lemma : le-add-cancel3

[c,d,t,t':ℤ].  uiff((c t) ≤ (d t');c ≤ d) supposing t' ∈ ℤ


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B add: m int: equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T le: A ≤ B not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] sq_type: SQType(T) all: x:A. B[x] guard: {T} subtype_rel: A ⊆B top: Top
Lemmas referenced :  add-zero zero-mul add-mul-special minus-one-mul add-associates add-is-int-iff add_functionality_wrt_le le_reflexive int_subtype_base subtype_base_sq equal_wf less_than'_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache axiomEquality lemma_by_obid isectElimination addEquality hypothesis voidElimination equalityTransitivity equalitySymmetry intEquality isect_memberEquality instantiate cumulativity independent_isectElimination independent_functionElimination minusEquality baseApply closedConclusion baseClosed applyEquality voidEquality natural_numberEquality

Latex:
\mforall{}[c,d,t,t':\mBbbZ{}].    uiff((c  +  t)  \mleq{}  (d  +  t');c  \mleq{}  d)  supposing  t  =  t'



Date html generated: 2016_05_13-PM-03_31_19
Last ObjectModification: 2016_01_14-PM-06_41_22

Theory : arithmetic


Home Index