Nuprl Lemma : singleton_int_seg
∀[a,b:ℤ]. ∀[x,y:{a..b-}].  x = y ∈ {a..b-} supposing b ≤ (a + 1)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
decidable__int_equal, 
false_wf, 
not-equal-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
and_wf, 
le_wf, 
less_than_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
addEquality, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[x,y:\{a..b\msupminus{}\}].    x  =  y  supposing  b  \mleq{}  (a  +  1)
Date html generated:
2016_05_13-PM-03_38_50
Last ObjectModification:
2015_12_26-AM-09_41_46
Theory : arithmetic
Home
Index