Nuprl Lemma : singleton_int_seg

[a,b:ℤ]. ∀[x,y:{a..b-}].  y ∈ {a..b-supposing b ≤ (a 1)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) lelt: i ≤ j < k subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  decidable__int_equal false_wf not-equal-2 less-iff-le condition-implies-le add-associates minus-one-mul add-swap minus-one-mul-top add_functionality_wrt_le add-commutes le-add-cancel2 and_wf le_wf less_than_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination hypothesis lemma_by_obid dependent_functionElimination hypothesisEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination isectElimination addEquality natural_numberEquality sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[x,y:\{a..b\msupminus{}\}].    x  =  y  supposing  b  \mleq{}  (a  +  1)



Date html generated: 2016_05_13-PM-03_38_50
Last ObjectModification: 2015_12_26-AM-09_41_46

Theory : arithmetic


Home Index