Nuprl Lemma : le2-homogeneous

[R:ℕ ⟶ ℕ ⟶ ℙ]. ∀[n:ℕ]. ∀[s:ℕn ⟶ ℕ].  ((n ≤ 2)  strictly-increasing-seq(n;s)  homogeneous(R;n;s))


Proof




Definitions occuring in Statement :  homogeneous: homogeneous(R;n;s) strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: le: A ≤ B implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q homogeneous: homogeneous(R;n;s) and: P ∧ Q all: x:A. B[x] iff: ⇐⇒ Q int_seg: {i..j-} nat: le: A ≤ B member: t ∈ T decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True sq_stable: SqStable(P) squash: T
Lemmas referenced :  decidable__int_equal false_wf not-equal-2 less-iff-le add_functionality_wrt_le add-associates add-zero add-swap add-commutes le-add-cancel2 sq_stable__le and_wf le_wf less_than_wf equal_wf nat_wf int_seg_wf strictly-increasing-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation hypothesis cut sqequalHypSubstitution setElimination thin rename productElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality unionElimination voidElimination independent_functionElimination independent_isectElimination isectElimination addEquality natural_numberEquality sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache dependent_set_memberEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry setEquality hyp_replacement Error :applyLambdaEquality,  functionExtensionality functionEquality cumulativity universeEquality

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].
    ((n  \mleq{}  2)  {}\mRightarrow{}  strictly-increasing-seq(n;s)  {}\mRightarrow{}  homogeneous(R;n;s))



Date html generated: 2016_10_21-AM-09_37_56
Last ObjectModification: 2016_07_12-AM-05_01_09

Theory : bar-induction


Home Index