Nuprl Lemma : le2-homogeneous
∀[R:ℕ ⟶ ℕ ⟶ ℙ]. ∀[n:ℕ]. ∀[s:ℕn ⟶ ℕ].  ((n ≤ 2) 
⇒ strictly-increasing-seq(n;s) 
⇒ homogeneous(R;n;s))
Proof
Definitions occuring in Statement : 
homogeneous: homogeneous(R;n;s)
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
homogeneous: homogeneous(R;n;s)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
le: A ≤ B
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
decidable__int_equal, 
false_wf, 
not-equal-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-swap, 
add-commutes, 
le-add-cancel2, 
sq_stable__le, 
and_wf, 
le_wf, 
less_than_wf, 
equal_wf, 
nat_wf, 
int_seg_wf, 
strictly-increasing-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
addEquality, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
functionExtensionality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].
    ((n  \mleq{}  2)  {}\mRightarrow{}  strictly-increasing-seq(n;s)  {}\mRightarrow{}  homogeneous(R;n;s))
Date html generated:
2016_10_21-AM-09_37_56
Last ObjectModification:
2016_07_12-AM-05_01_09
Theory : bar-induction
Home
Index