Nuprl Lemma : subst-exc-basecase

[v:Top]. ∀[e:Atom2].  (subst-exc(e;exception(e; v)) ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: subst-exc: subst-exc(e;t) atom: Atom$n uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subst-exc: subst-exc(e;t) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False subtype_rel: A ⊆B iff: ⇐⇒ Q not: ¬A rev_implies:  Q
Lemmas referenced :  top_wf eq_atom2_self btrue_wf bool_wf eqtt_to_assert assert_of_eq_atom2 eqff_to_assert eq_atom_wf2 equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf equal-wf-base atom2_subtype_base iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom atomnEquality sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache extract_by_obid lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination atomn_eqReduceTrueSq dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination applyEquality independent_pairFormation impliesFunctionality

Latex:
\mforall{}[v:Top].  \mforall{}[e:Atom2].    (subst-exc(e;exception(e;  v))  \msim{}  \mbot{})



Date html generated: 2017_04_14-AM-07_15_58
Last ObjectModification: 2017_02_27-PM-02_51_15

Theory : call!by!value_1


Home Index