Nuprl Lemma : subst-exc-basecase
∀[v:Top]. ∀[e:Atom2].  (subst-exc(e;exception(e; v)) ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥, 
subst-exc: subst-exc(e;t), 
atom: Atom$n, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subst-exc: subst-exc(e;t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
false: False, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q
Lemmas referenced : 
top_wf, 
eq_atom2_self, 
btrue_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom2, 
eqff_to_assert, 
eq_atom_wf2, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
atom2_subtype_base, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
atomnEquality, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
atomn_eqReduceTrueSq, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}[v:Top].  \mforall{}[e:Atom2].    (subst-exc(e;exception(e;  v))  \msim{}  \mbot{})
Date html generated:
2017_04_14-AM-07_15_58
Last ObjectModification:
2017_02_27-PM-02_51_15
Theory : call!by!value_1
Home
Index